File size: 8,339 Bytes
81b1a0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import torch
import torch.nn as nn
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import vgg16, vgg16_bn
from torchvision.models import resnet50

from config import Config
from dataset import class_labels_TR_sorted
from models.backbones.build_backbone import build_backbone
from models.modules.decoder_blocks import BasicDecBlk
from models.modules.lateral_blocks import BasicLatBlk
from models.modules.ing import *
from models.refinement.stem_layer import StemLayer


class RefinerPVTInChannels4(nn.Module):
    def __init__(self, in_channels=3+1):
        super(RefinerPVTInChannels4, self).__init__()
        self.config = Config()
        self.epoch = 1
        self.bb = build_backbone(self.config.bb, params_settings='in_channels=4')

        lateral_channels_in_collection = {
            'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
            'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
            'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
        }
        channels = lateral_channels_in_collection[self.config.bb]
        self.squeeze_module = BasicDecBlk(channels[0], channels[0])

        self.decoder = Decoder(channels)

        if 0:
            for key, value in self.named_parameters():
                if 'bb.' in key:
                    value.requires_grad = False

    def forward(self, x):
        if isinstance(x, list):
            x = torch.cat(x, dim=1)
        ########## Encoder ##########
        if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
            x1 = self.bb.conv1(x)
            x2 = self.bb.conv2(x1)
            x3 = self.bb.conv3(x2)
            x4 = self.bb.conv4(x3)
        else:
            x1, x2, x3, x4 = self.bb(x)

        x4 = self.squeeze_module(x4)

        ########## Decoder ##########

        features = [x, x1, x2, x3, x4]
        scaled_preds = self.decoder(features)

        return scaled_preds


class Refiner(nn.Module):
    def __init__(self, in_channels=3+1):
        super(Refiner, self).__init__()
        self.config = Config()
        self.epoch = 1
        self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3)
        self.bb = build_backbone(self.config.bb)

        lateral_channels_in_collection = {
            'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
            'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
            'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
        }
        channels = lateral_channels_in_collection[self.config.bb]
        self.squeeze_module = BasicDecBlk(channels[0], channels[0])

        self.decoder = Decoder(channels)

        if 0:
            for key, value in self.named_parameters():
                if 'bb.' in key:
                    value.requires_grad = False

    def forward(self, x):
        if isinstance(x, list):
            x = torch.cat(x, dim=1)
        x = self.stem_layer(x)
        ########## Encoder ##########
        if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
            x1 = self.bb.conv1(x)
            x2 = self.bb.conv2(x1)
            x3 = self.bb.conv3(x2)
            x4 = self.bb.conv4(x3)
        else:
            x1, x2, x3, x4 = self.bb(x)

        x4 = self.squeeze_module(x4)

        ########## Decoder ##########

        features = [x, x1, x2, x3, x4]
        scaled_preds = self.decoder(features)

        return scaled_preds


class Decoder(nn.Module):
    def __init__(self, channels):
        super(Decoder, self).__init__()
        self.config = Config()
        DecoderBlock = eval('BasicDecBlk')
        LateralBlock = eval('BasicLatBlk')

        self.decoder_block4 = DecoderBlock(channels[0], channels[1])
        self.decoder_block3 = DecoderBlock(channels[1], channels[2])
        self.decoder_block2 = DecoderBlock(channels[2], channels[3])
        self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2)

        self.lateral_block4 = LateralBlock(channels[1], channels[1])
        self.lateral_block3 = LateralBlock(channels[2], channels[2])
        self.lateral_block2 = LateralBlock(channels[3], channels[3])

        if self.config.ms_supervision:
            self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
            self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
            self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
        self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0))

    def forward(self, features):
        x, x1, x2, x3, x4 = features
        outs = []
        p4 = self.decoder_block4(x4)
        _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
        _p3 = _p4 + self.lateral_block4(x3)

        p3 = self.decoder_block3(_p3)
        _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
        _p2 = _p3 + self.lateral_block3(x2)

        p2 = self.decoder_block2(_p2)
        _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
        _p1 = _p2 + self.lateral_block2(x1)

        _p1 = self.decoder_block1(_p1)
        _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
        p1_out = self.conv_out1(_p1)

        if self.config.ms_supervision:
            outs.append(self.conv_ms_spvn_4(p4))
            outs.append(self.conv_ms_spvn_3(p3))
            outs.append(self.conv_ms_spvn_2(p2))
        outs.append(p1_out)
        return outs


class RefUNet(nn.Module):
    # Refinement
    def __init__(self, in_channels=3+1):
        super(RefUNet, self).__init__()
        self.encoder_1 = nn.Sequential(
            nn.Conv2d(in_channels, 64, 3, 1, 1),
            nn.Conv2d(64, 64, 3, 1, 1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True)
        )

        self.encoder_2 = nn.Sequential(
            nn.MaxPool2d(2, 2, ceil_mode=True),
            nn.Conv2d(64, 64, 3, 1, 1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True)
        )

        self.encoder_3 = nn.Sequential(
            nn.MaxPool2d(2, 2, ceil_mode=True),
            nn.Conv2d(64, 64, 3, 1, 1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True)
        )

        self.encoder_4 = nn.Sequential(
            nn.MaxPool2d(2, 2, ceil_mode=True),
            nn.Conv2d(64, 64, 3, 1, 1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True)
        )

        self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
        #####
        self.decoder_5 = nn.Sequential(
            nn.Conv2d(64, 64, 3, 1, 1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True)
        )
        #####
        self.decoder_4 = nn.Sequential(
            nn.Conv2d(128, 64, 3, 1, 1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True)
        )

        self.decoder_3 = nn.Sequential(
            nn.Conv2d(128, 64, 3, 1, 1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True)
        )

        self.decoder_2 = nn.Sequential(
            nn.Conv2d(128, 64, 3, 1, 1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True)
        )

        self.decoder_1 = nn.Sequential(
            nn.Conv2d(128, 64, 3, 1, 1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True)
        )

        self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)

        self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)

    def forward(self, x):
        outs = []
        if isinstance(x, list):
            x = torch.cat(x, dim=1)
        hx = x

        hx1 = self.encoder_1(hx)
        hx2 = self.encoder_2(hx1)
        hx3 = self.encoder_3(hx2)
        hx4 = self.encoder_4(hx3)

        hx = self.decoder_5(self.pool4(hx4))
        hx = torch.cat((self.upscore2(hx), hx4), 1)

        d4 = self.decoder_4(hx)
        hx = torch.cat((self.upscore2(d4), hx3), 1)

        d3 = self.decoder_3(hx)
        hx = torch.cat((self.upscore2(d3), hx2), 1)

        d2 = self.decoder_2(hx)
        hx = torch.cat((self.upscore2(d2), hx1), 1)

        d1 = self.decoder_1(hx)

        x = self.conv_d0(d1)
        outs.append(x)
        return outs