Ziqi commited on
Commit
119105c
1 Parent(s): 872c46f
Files changed (2) hide show
  1. app.py +197 -4
  2. app_000.py +7 -0
app.py CHANGED
@@ -1,7 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
1
+ #!/usr/bin/env python
2
+ """Demo app for https://github.com/adobe-research/custom-diffusion.
3
+ The code in this repo is partly adapted from the following repository:
4
+ https://huggingface.co/spaces/hysts/LoRA-SD-training
5
+ MIT License
6
+ Copyright (c) 2022 hysts
7
+ ==========================================================================================
8
+ Adobe’s modifications are Copyright 2022 Adobe Research. All rights reserved.
9
+ Adobe’s modifications are licensed under the Adobe Research License. To view a copy of the license, visit
10
+ LICENSE.
11
+ ==========================================================================================
12
+ """
13
+
14
+ from __future__ import annotations
15
+ import sys
16
+ import os
17
+ import pathlib
18
+
19
  import gradio as gr
20
+ import torch
21
+
22
+ from inference import InferencePipeline
23
+ from trainer import Trainer
24
+ from uploader import upload
25
+
26
+ TITLE = '# Custom Diffusion + StableDiffusion Training UI'
27
+ DESCRIPTION = '''This is a demo for [https://github.com/adobe-research/custom-diffusion](https://github.com/adobe-research/custom-diffusion).
28
+ It is recommended to upgrade to GPU in Settings after duplicating this space to use it.
29
+ <a href="https://huggingface.co/spaces/nupurkmr9/custom-diffusion?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
30
+ '''
31
+ DETAILDESCRIPTION='''
32
+ Custom Diffusion allows you to fine-tune text-to-image diffusion models, such as Stable Diffusion, given a few images of a new concept (~4-20).
33
+ We fine-tune only a subset of model parameters, namely key and value projection matrices, in the cross-attention layers and the modifier token used to represent the object.
34
+ This also reduces the extra storage for each additional concept to 75MB. Our method also allows you to use a combination of concepts. There's still limitations on which compositions work. For more analysis please refer to our [website](https://www.cs.cmu.edu/~custom-diffusion/).
35
+ <center>
36
+ <img src="https://huggingface.co/spaces/nupurkmr9/custom-diffusion/resolve/main/method.jpg" width="600" align="center" >
37
+ </center>
38
+ '''
39
+
40
+ ORIGINAL_SPACE_ID = 'nupurkmr9/custom-diffusion'
41
+ SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
42
+ SHARED_UI_WARNING = f'''# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
43
+ <center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
44
+ '''
45
+ if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
46
+ SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
47
+
48
+ else:
49
+ SETTINGS = 'Settings'
50
+ CUDA_NOT_AVAILABLE_WARNING = f'''# Attention - Running on CPU.
51
+ <center>
52
+ You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
53
+ "T4 small" is sufficient to run this demo.
54
+ </center>
55
+ '''
56
+
57
+ os.system("git clone https://github.com/ziqihuangg/ReVersion")
58
+ sys.path.append("ReVersion")
59
+
60
+ from ReVersion.inference import *
61
+
62
+ def show_warning(warning_text: str) -> gr.Blocks:
63
+ with gr.Blocks() as demo:
64
+ with gr.Box():
65
+ gr.Markdown(warning_text)
66
+ return demo
67
+
68
+
69
+ def update_output_files() -> dict:
70
+ paths = sorted(pathlib.Path('results').glob('*.bin'))
71
+ paths = [path.as_posix() for path in paths] # type: ignore
72
+ return gr.update(value=paths or None)
73
+
74
+
75
+ def find_weight_files() -> list[str]:
76
+ curr_dir = pathlib.Path(__file__).parent
77
+ paths = sorted(curr_dir.rglob('*.bin'))
78
+ paths = [path for path in paths if '.lfs' not in str(path)]
79
+ return [path.relative_to(curr_dir).as_posix() for path in paths]
80
+
81
+
82
+ def reload_custom_diffusion_weight_list() -> dict:
83
+ return gr.update(choices=find_weight_files())
84
+
85
+
86
+ def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
87
+ with gr.Blocks() as demo:
88
+ with gr.Row():
89
+ with gr.Column():
90
+ base_model = gr.Dropdown(
91
+ choices=['ReVersion/experiments/painted_on'],
92
+ value='ReVersion/experiments/painted_on',
93
+ label='Base Model',
94
+ visible=True)
95
+ resolution = gr.Dropdown(choices=[512, 768],
96
+ value=512,
97
+ label='Resolution',
98
+ visible=True)
99
+ reload_button = gr.Button('Reload Weight List')
100
+ weight_name = gr.Dropdown(choices=find_weight_files(),
101
+ value='ReVersion/experiments/painted_on',
102
+ label='ReVersion/experiments/painted_on')
103
+ prompt = gr.Textbox(
104
+ label='Prompt',
105
+ max_lines=1,
106
+ placeholder='Example: "cat <R> stone"')
107
+ seed = gr.Slider(label='Seed',
108
+ minimum=0,
109
+ maximum=100000,
110
+ step=1,
111
+ value=42)
112
+ with gr.Accordion('Other Parameters', open=False):
113
+ num_steps = gr.Slider(label='Number of Steps',
114
+ minimum=0,
115
+ maximum=500,
116
+ step=1,
117
+ value=100)
118
+ guidance_scale = gr.Slider(label='CFG Scale',
119
+ minimum=0,
120
+ maximum=50,
121
+ step=0.1,
122
+ value=6)
123
+ eta = gr.Slider(label='DDIM eta',
124
+ minimum=0,
125
+ maximum=1.,
126
+ step=0.1,
127
+ value=1.)
128
+ batch_size = gr.Slider(label='Batch Size',
129
+ minimum=0,
130
+ maximum=10.,
131
+ step=1,
132
+ value=1)
133
+
134
+ run_button = gr.Button('Generate')
135
+
136
+ gr.Markdown('''
137
+ - Models with names starting with "custom-diffusion-models/" are the pretrained models provided in the [original repo](https://github.com/adobe-research/custom-diffusion), and the ones with names starting with "results/delta.bin" are your trained models.
138
+ - After training, you can press "Reload Weight List" button to load your trained model names.
139
+ - Increase number of steps in Other parameters for better samples qualitatively.
140
+ ''')
141
+ with gr.Column():
142
+ result = gr.Image(label='Result')
143
+
144
+ reload_button.click(fn=reload_custom_diffusion_weight_list,
145
+ inputs=None,
146
+ outputs=weight_name)
147
+ prompt.submit(fn=pipe.run,
148
+ inputs=[
149
+ base_model,
150
+ weight_name,
151
+ prompt,
152
+ seed,
153
+ num_steps,
154
+ guidance_scale,
155
+ eta,
156
+ batch_size,
157
+ resolution
158
+ ],
159
+ outputs=result,
160
+ queue=False)
161
+ run_button.click(fn=pipe.run,
162
+ inputs=[
163
+ base_model,
164
+ weight_name,
165
+ prompt,
166
+ seed,
167
+ num_steps,
168
+ guidance_scale,
169
+ eta,
170
+ batch_size,
171
+ resolution
172
+ ],
173
+ outputs=result,
174
+ queue=False)
175
+ return demo
176
+
177
+
178
+ pipe = InferencePipeline()
179
+ trainer = Trainer()
180
+
181
+ with gr.Blocks(css='style.css') as demo:
182
+ if os.getenv('IS_SHARED_UI'):
183
+ show_warning(SHARED_UI_WARNING)
184
+ if not torch.cuda.is_available():
185
+ show_warning(CUDA_NOT_AVAILABLE_WARNING)
186
+
187
+ gr.Markdown(TITLE)
188
+ gr.Markdown(DESCRIPTION)
189
+ gr.Markdown(DETAILDESCRIPTION)
190
+
191
+ with gr.Tabs():
192
+ # with gr.TabItem('Train'):
193
+ # create_training_demo(trainer, pipe)
194
+ with gr.TabItem('Inference'):
195
+ create_inference_demo(pipe)
196
+ # with gr.TabItem('Upload'):
197
+ # create_upload_demo()
198
 
199
+ demo.queue(default_enabled=False).launch(share=False)
 
200
 
 
 
app_000.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ def greet(name):
4
+ return "Hello " + name + "!!"
5
+
6
+ iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
+ iface.launch()