jvamvas commited on
Commit
fda57dd
·
1 Parent(s): 2f6a112

Basic implementation

Browse files
app.py CHANGED
@@ -1,9 +1,84 @@
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
 
 
3
 
4
- def greet(name):
5
- return "Hello " + name + "!!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
 
8
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
9
- iface.launch()
 
 
1
+ from pathlib import Path
2
+
3
  import gradio as gr
4
+ from jinja2 import Environment
5
+ from tokenizers.pre_tokenizers import Whitespace
6
+ from transformers import pipeline
7
+
8
+ from recognizers import DiffAlign, DiffDel
9
+
10
+
11
+ def load_pipeline(model_name_or_path: str = "ZurichNLP/unsup-simcse-xlm-roberta-base"):
12
+ return pipeline("feature-extraction", model=model_name_or_path)
13
+
14
+
15
+ def generate_diff(text_a: str, text_b: str, method: str):
16
+ global my_pipeline
17
+ if my_pipeline is None:
18
+ my_pipeline = load_pipeline()
19
+
20
+ if method == "DiffAlign":
21
+ diff = DiffAlign(pipeline=my_pipeline)
22
+ min_value = 0.3758048415184021 - 0.37
23
+ max_value = 1.045647144317627 - 0.1
24
+ elif method == "DiffDel":
25
+ diff = DiffDel(pipeline=my_pipeline)
26
+ min_value = 0.4864141941070556
27
+ max_value = 0.5012983083724976 + 0.025
28
+ else:
29
+ raise ValueError(f"Unknown method: {method}")
30
+
31
+ encoding_a = tokenizer.pre_tokenize_str(text_a)
32
+ encoding_b = tokenizer.pre_tokenize_str(text_b)
33
+
34
+ result = diff.predict(
35
+ a=" ".join([token[0] for token in encoding_a]),
36
+ b=" ".join([token[0] for token in encoding_b]),
37
+ )
38
+
39
+ result.add_whitespace(encoding_a, encoding_b)
40
+
41
+ # Normalize labels based on empirical min/max values
42
+ result.labels_a = tuple([(label - min_value) / (max_value - min_value) for label in result.labels_a])
43
+ result.labels_b = tuple([(label - min_value) / (max_value - min_value) for label in result.labels_b])
44
+
45
+ # Round labels to range 0, 2, ... 10
46
+ result.labels_a = tuple([round(min(10, label * 10)) for label in result.labels_a])
47
+ result.labels_b = tuple([round(min(10, label * 10)) for label in result.labels_b])
48
+
49
+ template_path = Path(__file__).parent / "result_template.html"
50
+ template = Environment().from_string(template_path.read_text())
51
+ html_dir = Path(__file__).parent / "html_out"
52
+ html_dir.mkdir(exist_ok=True)
53
+
54
+ html_a = template.render(token_labels=result.token_labels_a)
55
+ html_b = template.render(token_labels=result.token_labels_b)
56
+ return str(html_a), str(html_b)
57
+
58
 
59
+ my_pipeline = None
60
+ tokenizer = Whitespace()
61
 
62
+ with gr.Blocks() as demo:
63
+ with gr.Row():
64
+ text_a = gr.Textbox(label="Text A", value="Chinese shares close higher Friday.", lines=2)
65
+ text_b = gr.Textbox(label="Text B", value="Les actions chinoises clôturent en baisse mercredi.", lines=2)
66
+ with gr.Row():
67
+ method = gr.Dropdown(choices=["DiffAlign", "DiffDel"], label="Comparison Method", value="DiffAlign")
68
+ with gr.Row():
69
+ with gr.Column(variant="panel"):
70
+ output_a = gr.HTML(label="Result for text A", show_label=True)
71
+ with gr.Column(variant="panel"):
72
+ output_b = gr.HTML(label="Result for text B", show_label=True)
73
+ with gr.Row():
74
+ submit_btn = gr.Button(label="Generate Diff")
75
+ submit_btn.click(
76
+ fn=generate_diff,
77
+ inputs=[text_a, text_b, method],
78
+ outputs=[output_a, output_b],
79
+ )
80
 
81
 
82
+ if my_pipeline is None:
83
+ my_pipeline = load_pipeline()
84
+ demo.launch()
get_max_min_values.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Get similarities of similar and dissimilar pairs.
3
+ The values are used for normalizing the colors in the visualization.
4
+ """
5
+ from app import load_pipeline
6
+ from recognizers import DiffAlign, DiffDel
7
+
8
+ similar_pair = ("Hello!", "Hi!")
9
+ dissimilar_pair = ("Hello!", "asdf")
10
+
11
+ pipeline = load_pipeline()
12
+ diff_align = DiffAlign(pipeline=pipeline)
13
+ diff_del = DiffDel(pipeline=pipeline)
14
+
15
+ print("Similar pair:")
16
+ print(diff_align.predict(*similar_pair).min)
17
+ print(diff_del.predict(*similar_pair).min)
18
+
19
+ print("Dissimilar pair:")
20
+ print(diff_align.predict(*dissimilar_pair).max)
21
+ print(diff_del.predict(*dissimilar_pair).max)
recognizers/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from recognizers.diff_align import DiffAlign
2
+ from recognizers.diff_del import DiffDel
recognizers/base.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Source: https://github.com/ZurichNLP/recognizing-semantic-differences
3
+ MIT License
4
+ Copyright (c) 2023 University of Zurich
5
+ """
6
+
7
+ from typing import List
8
+
9
+ from tqdm import tqdm
10
+
11
+ from recognizers.utils import DifferenceSample
12
+
13
+
14
+ class DifferenceRecognizer:
15
+
16
+ def __str__(self):
17
+ raise NotImplemented
18
+
19
+ def predict(self,
20
+ a: str,
21
+ b: str,
22
+ **kwargs,
23
+ ) -> DifferenceSample:
24
+ raise NotImplemented
25
+
26
+ def predict_all(self,
27
+ a: List[str],
28
+ b: List[str],
29
+ **kwargs,
30
+ ) -> List[DifferenceSample]:
31
+ assert len(a) == len(b)
32
+ predictions = []
33
+ for i in tqdm(list(range(len(a)))):
34
+ prediction = self.predict(a[i], b[i], **kwargs)
35
+ predictions.append(prediction)
36
+ return predictions
recognizers/diff_align.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Source: https://github.com/ZurichNLP/recognizing-semantic-differences
3
+ MIT License
4
+ Copyright (c) 2023 University of Zurich
5
+ """
6
+
7
+ from typing import List
8
+
9
+ import torch
10
+
11
+ from recognizers.feature_based import FeatureExtractionRecognizer
12
+ from recognizers.utils import DifferenceSample, cos_sim
13
+
14
+
15
+ class DiffAlign(FeatureExtractionRecognizer):
16
+
17
+ def __str__(self):
18
+ return f"DiffAlign(model={self.pipeline.model.name_or_path}, layer={self.layer}"
19
+
20
+ @torch.no_grad()
21
+ def _predict_all(self,
22
+ a: List[str],
23
+ b: List[str],
24
+ **kwargs,
25
+ ) -> List[DifferenceSample]:
26
+ outputs_a = self.encode_batch(a, **kwargs)
27
+ outputs_b = self.encode_batch(b, **kwargs)
28
+ subwords_by_words_a = [self._get_subwords_by_word(sentence) for sentence in a]
29
+ subwords_by_words_b = [self._get_subwords_by_word(sentence) for sentence in b]
30
+ subword_labels_a = []
31
+ subword_labels_b = []
32
+ for i in range(len(a)):
33
+ cosine_similarities = cos_sim(outputs_a[i], outputs_b[i])
34
+ max_similarities_a = torch.max(cosine_similarities, dim=1).values
35
+ max_similarities_b = torch.max(cosine_similarities, dim=0).values
36
+ subword_labels_a.append((1 - max_similarities_a))
37
+ subword_labels_b.append((1 - max_similarities_b))
38
+ samples = []
39
+ for i in range(len(a)):
40
+ labels_a = self._subword_labels_to_word_labels(subword_labels_a[i], subwords_by_words_a[i])
41
+ labels_b = self._subword_labels_to_word_labels(subword_labels_b[i], subwords_by_words_b[i])
42
+ samples.append(DifferenceSample(
43
+ tokens_a=tuple(a[i].split()),
44
+ tokens_b=tuple(b[i].split()),
45
+ labels_a=tuple(labels_a),
46
+ labels_b=tuple(labels_b),
47
+ ))
48
+ return samples
recognizers/diff_del.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Source: https://github.com/ZurichNLP/recognizing-semantic-differences
3
+ MIT License
4
+ Copyright (c) 2023 University of Zurich
5
+ """
6
+
7
+ import itertools
8
+ from copy import deepcopy
9
+ from typing import Union, List
10
+
11
+ import torch
12
+ from transformers import Pipeline, FeatureExtractionPipeline
13
+
14
+ from recognizers.feature_based import FeatureExtractionRecognizer, Ngram
15
+ from recognizers.utils import DifferenceSample, pairwise_cos_sim, cos_sim
16
+
17
+
18
+ class DiffDel(FeatureExtractionRecognizer):
19
+
20
+ def __init__(self,
21
+ model_name_or_path: str = None,
22
+ pipeline: Union[FeatureExtractionPipeline, Pipeline] = None,
23
+ layer: int = -1,
24
+ batch_size: int = 16,
25
+ min_n: int = 1,
26
+ max_n: int = 1, # Inclusive
27
+ ):
28
+ super().__init__(model_name_or_path, pipeline, layer, batch_size)
29
+ assert min_n <= max_n
30
+ self.min_n = min_n
31
+ self.max_n = max_n
32
+
33
+ def __str__(self):
34
+ return f"DiffDel(model={self.pipeline.model.name_or_path}, layer={self.layer}, " \
35
+ f"min_n={self.min_n}, max_n={self.max_n})"
36
+
37
+ @torch.no_grad()
38
+ def _predict_all(self,
39
+ a: List[str],
40
+ b: List[str],
41
+ **kwargs,
42
+ ) -> List[DifferenceSample]:
43
+ outputs_a = self.encode_batch(a, **kwargs)
44
+ outputs_b = self.encode_batch(b, **kwargs)
45
+ subwords_by_words_a = [self._get_subwords_by_word(sentence) for sentence in a]
46
+ subwords_by_words_b = [self._get_subwords_by_word(sentence) for sentence in b]
47
+ ngrams_a = [self._get_ngrams(subwords_by_word) for subwords_by_word in subwords_by_words_a]
48
+ ngrams_b = [self._get_ngrams(subwords_by_word) for subwords_by_word in subwords_by_words_b]
49
+ sentence_embeddings_a = self._get_full_sentence_embeddings(outputs_a, [list(itertools.chain.from_iterable(subwords)) for subwords in subwords_by_words_a])
50
+ sentence_embeddings_b = self._get_full_sentence_embeddings(outputs_b, [list(itertools.chain.from_iterable(subwords)) for subwords in subwords_by_words_b])
51
+ full_similarities = pairwise_cos_sim(sentence_embeddings_a, sentence_embeddings_b)
52
+
53
+ all_labels_a = []
54
+ all_labels_b = []
55
+ for i in range(len(a)):
56
+ partial_embeddings_a = self._get_partial_sentence_embeddings_for_sample(outputs_a[i], ngrams_a[i])
57
+ partial_embeddings_b = self._get_partial_sentence_embeddings_for_sample(outputs_b[i], ngrams_b[i])
58
+ partial_similarities_a = cos_sim(partial_embeddings_a, sentence_embeddings_b[i].unsqueeze(0)).squeeze(1)
59
+ partial_similarities_b = cos_sim(partial_embeddings_b, sentence_embeddings_a[i].unsqueeze(0)).squeeze(1)
60
+ ngram_labels_a = (partial_similarities_a - full_similarities[i] + 1) / 2
61
+ ngram_labels_b = (partial_similarities_b - full_similarities[i] + 1) / 2
62
+ subword_labels_a = self._distribute_ngram_labels_to_subwords(ngram_labels_a, ngrams_a[i])
63
+ subword_labels_b = self._distribute_ngram_labels_to_subwords(ngram_labels_b, ngrams_b[i])
64
+ labels_a = self._subword_labels_to_word_labels(subword_labels_a, subwords_by_words_a[i])
65
+ labels_b = self._subword_labels_to_word_labels(subword_labels_b, subwords_by_words_b[i])
66
+ all_labels_a.append(labels_a)
67
+ all_labels_b.append(labels_b)
68
+
69
+ samples = []
70
+ for i in range(len(a)):
71
+ samples.append(DifferenceSample(
72
+ tokens_a=tuple(a[i].split()),
73
+ tokens_b=tuple(b[i].split()),
74
+ labels_a=tuple(all_labels_a[i]),
75
+ labels_b=tuple(all_labels_b[i]),
76
+ ))
77
+ return samples
78
+
79
+ def _get_full_sentence_embeddings(self, token_embeddings: torch.Tensor, include_subwords: List[List[int]]) -> torch.Tensor:
80
+ """
81
+ :param token_embeddings: batch x seq_len x dim
82
+ :param include_subwords: batch x num_subwords
83
+ :return: A tensor of shape batch x dim
84
+ """
85
+ pool_mask = torch.zeros(token_embeddings.shape[0], token_embeddings.shape[1], device=token_embeddings.device)
86
+ for i, subword_indices in enumerate(include_subwords):
87
+ pool_mask[i, subword_indices] = 1
88
+ sentence_embeddings = self._pool(token_embeddings, pool_mask)
89
+ return sentence_embeddings
90
+
91
+ def _get_partial_sentence_embeddings_for_sample(self, token_embeddings: torch.Tensor, ngrams: List[Ngram]) -> torch.Tensor:
92
+ """
93
+ :param token_embeddings: seq_len x dim
94
+ :param ngrams: num_ngrams x n
95
+ :return: A tensor of shape num_ngrams x dim
96
+ """
97
+ pool_mask = torch.zeros(len(ngrams), token_embeddings.shape[0], device=token_embeddings.device)
98
+ pool_mask[:, list(itertools.chain.from_iterable(ngrams))] = 1
99
+ for i, subword_indices in enumerate(ngrams):
100
+ pool_mask[i, subword_indices] = 0
101
+ partial_embeddings = self._pool(token_embeddings.unsqueeze(0).repeat(len(ngrams), 1, 1), pool_mask)
102
+ return partial_embeddings
103
+
104
+ def _distribute_ngram_labels_to_subwords(self, ngram_labels: torch.Tensor, ngrams: List[Ngram]) -> torch.Tensor:
105
+ """
106
+ :param ngram_labels: num_ngrams
107
+ :param ngrams: num_ngrams x n
108
+ :return: num_subwords
109
+ """
110
+ max_subword_idx = max(itertools.chain.from_iterable(ngrams))
111
+ subword_contributions = torch.zeros(max_subword_idx + 1, device=ngram_labels.device)
112
+ contribution_count = torch.zeros(max_subword_idx + 1, device=ngram_labels.device)
113
+ for i, ngram in enumerate(ngrams):
114
+ subword_contributions[ngram] += ngram_labels[i] / len(ngram)
115
+ contribution_count[ngram] += 1 / len(ngram)
116
+ subword_contributions /= contribution_count
117
+ return subword_contributions
118
+
119
+
120
+ class DiffDelWithReencode(FeatureExtractionRecognizer):
121
+ """
122
+ Version of DiffDel that encodes the partial sentences from scratch (instead of encoding the full sentence once and
123
+ then excluding hidden states from the mean)
124
+ """
125
+
126
+ def __init__(self,
127
+ model_name_or_path: str = None,
128
+ pipeline: Union[FeatureExtractionPipeline, Pipeline] = None,
129
+ layer: int = -1,
130
+ batch_size: int = 16,
131
+ ):
132
+ super().__init__(model_name_or_path, pipeline, layer, batch_size)
133
+
134
+ def __str__(self):
135
+ return f"DiffDelWithReencode(model={self.pipeline.model.name_or_path}, layer={self.layer})"
136
+
137
+ @torch.no_grad()
138
+ def _predict_all(self,
139
+ a: List[str],
140
+ b: List[str],
141
+ **kwargs,
142
+ ) -> List[DifferenceSample]:
143
+ a_words = [sentence.split() for sentence in a]
144
+ b_words = [sentence.split() for sentence in b]
145
+ a_words_partial = []
146
+ b_words_partial = []
147
+ for words in a_words:
148
+ for i, word in enumerate(words):
149
+ partial = deepcopy(words)
150
+ del partial[i]
151
+ a_words_partial.append(partial)
152
+ for words in b_words:
153
+ for i, word in enumerate(words):
154
+ partial = deepcopy(words)
155
+ del partial[i]
156
+ b_words_partial.append(partial)
157
+ a_partial = [" ".join([word for word in words if word]) for words in a_words_partial]
158
+ b_partial = [" ".join([word for word in words if word]) for words in b_words_partial]
159
+ a_num_partial = [len(words) for words in a_words]
160
+ b_num_partial = [len(words) for words in b_words]
161
+ a_embedding_full = self._encode_and_pool(a, **kwargs)
162
+ b_embedding_full = self._encode_and_pool(b, **kwargs)
163
+ a_embeddings_partial = []
164
+ b_embeddings_partial = []
165
+ for i in range(0, len(a_partial), self.batch_size):
166
+ a_embeddings_partial_batch = self._encode_and_pool(a_partial[i:i + self.batch_size], **kwargs)
167
+ a_embeddings_partial.append(a_embeddings_partial_batch)
168
+ for i in range(0, len(b_partial), self.batch_size):
169
+ b_embeddings_partial_batch = self._encode_and_pool(b_partial[i:i + self.batch_size], **kwargs)
170
+ b_embeddings_partial.append(b_embeddings_partial_batch)
171
+ a_embeddings_partial = torch.cat(a_embeddings_partial, dim=0)
172
+ b_embeddings_partial = torch.cat(b_embeddings_partial, dim=0)
173
+
174
+ labels_a = []
175
+ labels_b = []
176
+ similarity_full = pairwise_cos_sim(a_embedding_full, b_embedding_full)
177
+ for i in range(len(a)):
178
+ a_embeddings_partial_i = a_embeddings_partial[sum(a_num_partial[:i]):sum(a_num_partial[:i + 1])]
179
+ similarities_partial = pairwise_cos_sim(a_embeddings_partial_i, b_embedding_full[i].unsqueeze(0)).squeeze(0)
180
+ labels = (similarities_partial - similarity_full[i] + 1) / 2
181
+ labels = labels.detach().cpu().tolist()
182
+ if isinstance(labels, float):
183
+ labels = [labels]
184
+ assert len(labels) == len(a_words[i])
185
+ labels_a.append(labels)
186
+ for i in range(len(b)):
187
+ b_embeddings_partial_i = b_embeddings_partial[sum(b_num_partial[:i]):sum(b_num_partial[:i + 1])]
188
+ similarities_partial = pairwise_cos_sim(b_embeddings_partial_i, a_embedding_full[i].unsqueeze(0)).squeeze(0)
189
+ labels = (similarities_partial - similarity_full[i] + 1) / 2
190
+ labels = labels.detach().cpu().tolist()
191
+ if isinstance(labels, float):
192
+ labels = [labels]
193
+ assert len(labels) == len(b_words[i])
194
+ labels_b.append(labels)
195
+
196
+ samples = []
197
+ for i in range(len(a)):
198
+ samples.append(DifferenceSample(
199
+ tokens_a=tuple(a_words[i]),
200
+ tokens_b=tuple(b_words[i]),
201
+ labels_a=tuple(labels_a[i]),
202
+ labels_b=tuple(labels_b[i]),
203
+ ))
204
+ return samples
205
+
206
+ def _encode_and_pool(self, sentences: List[str], **kwargs) -> torch.Tensor:
207
+ model_inputs = self.pipeline.tokenizer(sentences, return_tensors="pt", padding=True, truncation=True)
208
+ model_inputs = model_inputs.to(self.pipeline.device)
209
+ outputs = self.pipeline.model(**model_inputs, output_hidden_states=True, **kwargs)
210
+ if self.layer == "mean":
211
+ token_embeddings = torch.stack(outputs.hidden_states, dim=0).mean(dim=0)
212
+ else:
213
+ assert isinstance(self.layer, int)
214
+ token_embeddings = outputs.hidden_states[self.layer]
215
+ mask = model_inputs["attention_mask"]
216
+ sentence_embeddings = torch.sum(token_embeddings * mask.unsqueeze(-1), dim=1)
217
+ return sentence_embeddings
recognizers/feature_based.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Source: https://github.com/ZurichNLP/recognizing-semantic-differences
3
+ MIT License
4
+ Copyright (c) 2023 University of Zurich
5
+ """
6
+
7
+ import itertools
8
+ from typing import List, Union
9
+
10
+ import torch
11
+ import transformers
12
+ from transformers import FeatureExtractionPipeline, Pipeline
13
+
14
+ from recognizers.base import DifferenceRecognizer
15
+ from recognizers.utils import DifferenceSample
16
+
17
+ Ngram = List[int] # A span of subword indices
18
+
19
+
20
+ class FeatureExtractionRecognizer(DifferenceRecognizer):
21
+
22
+ def __init__(self,
23
+ model_name_or_path: str = None,
24
+ pipeline: Union[FeatureExtractionPipeline, Pipeline] = None,
25
+ layer: int = -1,
26
+ batch_size: int = 16,
27
+ ):
28
+ assert model_name_or_path is not None or pipeline is not None
29
+ if pipeline is None:
30
+ pipeline = transformers.pipeline(
31
+ model=model_name_or_path,
32
+ task="feature-extraction",
33
+ )
34
+ self.pipeline = pipeline
35
+ self.layer = layer
36
+ self.batch_size = batch_size
37
+
38
+ def encode_batch(self, sentences: List[str], **kwargs) -> torch.Tensor:
39
+ model_inputs = self.pipeline.tokenizer(sentences, return_tensors="pt", padding=True, truncation=True)
40
+ model_inputs = model_inputs.to(self.pipeline.device)
41
+ outputs = self.pipeline.model(**model_inputs, output_hidden_states=True, **kwargs)
42
+ return outputs.hidden_states[self.layer]
43
+
44
+ def predict(self,
45
+ a: str,
46
+ b: str,
47
+ **kwargs,
48
+ ) -> DifferenceSample:
49
+ return self.predict_all([a], [b], **kwargs)[0]
50
+
51
+ def predict_all(self,
52
+ a: List[str],
53
+ b: List[str],
54
+ **kwargs,
55
+ ) -> List[DifferenceSample]:
56
+ samples = []
57
+ for i in range(0, len(a), self.batch_size):
58
+ samples.extend(self._predict_all(
59
+ a[i:i + self.batch_size],
60
+ b[i:i + self.batch_size],
61
+ **kwargs,
62
+ ))
63
+ return samples
64
+
65
+ @torch.no_grad()
66
+ def _predict_all(self,
67
+ a: List[str],
68
+ b: List[str],
69
+ **kwargs,
70
+ ) -> List[DifferenceSample]:
71
+ raise NotImplementedError
72
+
73
+ def _pool(self, token_embeddings: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
74
+ """
75
+ :param token_embeddings: batch x seq_len x dim
76
+ :param mask: batch x seq_len; 1 if token should be included in the pooling
77
+ :return: batch x dim
78
+ Do only sum and do not divide by the number of tokens because cosine similarity is length-invariant.
79
+ """
80
+ return torch.sum(token_embeddings * mask.unsqueeze(-1), dim=1)
81
+
82
+ def _get_subwords_by_word(self, sentence: str) -> List[Ngram]:
83
+ """
84
+ :return: For each word in the sentence, the positions of the subwords that make up the word.
85
+ """
86
+ batch_encoding = self.pipeline.tokenizer(
87
+ sentence,
88
+ padding=True,
89
+ truncation=True,
90
+ )
91
+ subword_ids: List[List[int]] = []
92
+
93
+ for subword_idx in range(len(batch_encoding.encodings[0].word_ids)):
94
+ if batch_encoding.encodings[0].word_ids[subword_idx] is None: # Special token
95
+ continue
96
+ char_idx = batch_encoding.encodings[0].offsets[subword_idx][0]
97
+ if isinstance(self.pipeline.tokenizer, transformers.XLMRobertaTokenizerFast) or \
98
+ isinstance(self.pipeline.tokenizer, transformers.XLMRobertaTokenizer):
99
+ token = batch_encoding.encodings[0].tokens[subword_idx]
100
+ is_tail = not token.startswith("▁") and token not in self.pipeline.tokenizer.all_special_tokens
101
+ elif isinstance(self.pipeline.tokenizer, transformers.RobertaTokenizerFast) or \
102
+ isinstance(self.pipeline.tokenizer, transformers.RobertaTokenizer):
103
+ token = batch_encoding.encodings[0].tokens[subword_idx]
104
+ is_tail = not token.startswith("Ġ") and token not in self.pipeline.tokenizer.all_special_tokens
105
+ else:
106
+ is_tail = char_idx > 0 and char_idx == batch_encoding.encodings[0].offsets[subword_idx - 1][1]
107
+ if is_tail and len(subword_ids) > 0:
108
+ subword_ids[-1].append(subword_idx)
109
+ else:
110
+ subword_ids.append([subword_idx])
111
+ return subword_ids
112
+
113
+ def _get_ngrams(self, subwords_by_word: List[Ngram]) -> List[Ngram]:
114
+ """
115
+ :return: For each subword ngram in the sentence, the positions of the subwords that make up the ngram.
116
+ """
117
+ subwords = list(itertools.chain.from_iterable(subwords_by_word))
118
+ # Always return at least one ngram (reduce n if necessary)
119
+ min_n = min(self.min_n, len(subwords))
120
+ ngrams = []
121
+ for n in range(min_n, self.max_n + 1):
122
+ for i in range(len(subwords) - n + 1):
123
+ ngrams.append(subwords[i:i + n])
124
+ return ngrams
125
+
126
+ def _subword_labels_to_word_labels(self, subword_labels: torch.Tensor, subwords_by_words: List[Ngram]) -> List[float]:
127
+ """
128
+ :param subword_labels: num_subwords
129
+ :param subwords_by_words: num_words x num_subwords
130
+ :return: num_words
131
+ """
132
+ labels = []
133
+ for subword_indices in subwords_by_words:
134
+ label = subword_labels[subword_indices].mean().item()
135
+ labels.append(label)
136
+ return labels
recognizers/utils.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Source: https://github.com/ZurichNLP/recognizing-semantic-differences
3
+ MIT License
4
+ Copyright (c) 2023 University of Zurich
5
+ """
6
+
7
+ from dataclasses import dataclass
8
+ from typing import Tuple, Optional
9
+
10
+ import torch
11
+ from tokenizers.pre_tokenizers import Whitespace
12
+ from torch import Tensor
13
+
14
+
15
+ @dataclass
16
+ class DifferenceSample:
17
+ tokens_a: Tuple[str, ...]
18
+ tokens_b: Tuple[str, ...]
19
+ labels_a: Tuple[float, ...]
20
+ labels_b: Optional[Tuple[float, ...]]
21
+
22
+ def add_whitespace(self, encoding_a, encoding_b):
23
+ self.tokens_a = self._add_whitespace(self.tokens_a, encoding_a)
24
+ self.tokens_b = self._add_whitespace(self.tokens_b, encoding_b)
25
+
26
+ def _add_whitespace(self, tokens, encoding) -> Tuple[str, ...]:
27
+ assert len(tokens) == len(encoding)
28
+ new_tokens = []
29
+ for i in range(len(encoding)):
30
+ token = tokens[i]
31
+ if i < len(encoding) - 1:
32
+ cur_end = encoding[i][1][1]
33
+ next_start = encoding[i + 1][1][0]
34
+ token += " " * (next_start - cur_end)
35
+ new_tokens.append(token)
36
+ return tuple(new_tokens)
37
+
38
+ # For rendering with Jinja2
39
+ @property
40
+ def token_labels_a(self) -> Tuple[Tuple[str, float], ...]:
41
+ return tuple(zip(self.tokens_a, self.labels_a))
42
+
43
+ @property
44
+ def token_labels_b(self) -> Tuple[Tuple[str, float], ...]:
45
+ return tuple(zip(self.tokens_b, self.labels_b))
46
+
47
+ @property
48
+ def min(self) -> float:
49
+ return min(self.labels_a + self.labels_b)
50
+
51
+ @property
52
+ def max(self) -> float:
53
+ return max(self.labels_a + self.labels_b)
54
+
55
+
56
+ def tokenize(text: str) -> Tuple[str]:
57
+ """
58
+ Apply Moses-like tokenization to a string.
59
+ """
60
+ whitespace_tokenizer = Whitespace()
61
+ output = whitespace_tokenizer.pre_tokenize_str(text)
62
+ # [('This', (0, 4)), ('is', (5, 7)), ('a', (8, 9)), ('test', (10, 14)), ('.', (14, 15))]
63
+ tokens = [str(token[0]) for token in output]
64
+ return tuple(tokens)
65
+
66
+
67
+ def cos_sim(a: Tensor, b: Tensor):
68
+ """
69
+ Copied from https://github.com/UKPLab/sentence-transformers/blob/d928410803bb90f555926d145ee7ad3bd1373a83/sentence_transformers/util.py#L31
70
+
71
+ Computes the cosine similarity cos_sim(a[i], b[j]) for all i and j.
72
+ :return: Matrix with res[i][j] = cos_sim(a[i], b[j])
73
+ """
74
+ if not isinstance(a, torch.Tensor):
75
+ a = torch.tensor(a)
76
+
77
+ if not isinstance(b, torch.Tensor):
78
+ b = torch.tensor(b)
79
+
80
+ if len(a.shape) == 1:
81
+ a = a.unsqueeze(0)
82
+
83
+ if len(b.shape) == 1:
84
+ b = b.unsqueeze(0)
85
+
86
+ a_norm = torch.nn.functional.normalize(a, p=2, dim=1)
87
+ b_norm = torch.nn.functional.normalize(b, p=2, dim=1)
88
+ return torch.mm(a_norm, b_norm.transpose(0, 1))
89
+
90
+
91
+ def pairwise_dot_score(a: Tensor, b: Tensor):
92
+ """
93
+ Copied from https://github.com/UKPLab/sentence-transformers/blob/d928410803bb90f555926d145ee7ad3bd1373a83/sentence_transformers/util.py#L73
94
+
95
+ Computes the pairwise dot-product dot_prod(a[i], b[i])
96
+ :return: Vector with res[i] = dot_prod(a[i], b[i])
97
+ """
98
+ if not isinstance(a, torch.Tensor):
99
+ a = torch.tensor(a)
100
+
101
+ if not isinstance(b, torch.Tensor):
102
+ b = torch.tensor(b)
103
+
104
+ return (a * b).sum(dim=-1)
105
+
106
+
107
+ def normalize_embeddings(embeddings: Tensor):
108
+ """
109
+ Copied from https://github.com/UKPLab/sentence-transformers/blob/d928410803bb90f555926d145ee7ad3bd1373a83/sentence_transformers/util.py#L101
110
+
111
+ Normalizes the embeddings matrix, so that each sentence embedding has unit length
112
+ """
113
+ return torch.nn.functional.normalize(embeddings, p=2, dim=1)
114
+
115
+
116
+ def pairwise_cos_sim(a: Tensor, b: Tensor):
117
+ """
118
+ Copied from https://github.com/UKPLab/sentence-transformers/blob/d928410803bb90f555926d145ee7ad3bd1373a83/sentence_transformers/util.py#L87
119
+
120
+ Computes the pairwise cossim cos_sim(a[i], b[i])
121
+ :return: Vector with res[i] = cos_sim(a[i], b[i])
122
+ """
123
+ if not isinstance(a, torch.Tensor):
124
+ a = torch.tensor(a)
125
+
126
+ if not isinstance(b, torch.Tensor):
127
+ b = torch.tensor(b)
128
+
129
+ return pairwise_dot_score(normalize_embeddings(a), normalize_embeddings(b))
result_template.html ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ {% for token, label in token_labels %}<span class="highlight-{{ label }}">{{ token }}</span>{% endfor %}
3
+ </p>
4
+
5
+
6
+ <style>
7
+ .highlight-1 {
8
+ background: linear-gradient(90deg, transparent, rgba(255, 245, 235, 0.05), transparent);
9
+ }
10
+
11
+ .highlight-2 {
12
+ background: linear-gradient(90deg, transparent, rgba(254, 230, 206, 0.10), transparent);
13
+ }
14
+
15
+ .highlight-3 {
16
+ background: linear-gradient(90deg, transparent, rgba(253, 208, 162, 0.15), transparent);
17
+ }
18
+
19
+ .highlight-4 {
20
+ background: linear-gradient(90deg, transparent, rgba(253, 141, 60, 0.20), transparent);
21
+ }
22
+
23
+ .highlight-5 {
24
+ background: linear-gradient(90deg, transparent, rgba(241, 105, 19, 0.25), transparent);
25
+ }
26
+
27
+ .highlight-6 {
28
+ background: linear-gradient(90deg, transparent, rgba(217, 72, 1, 0.30), transparent);
29
+ }
30
+
31
+ .highlight-7 {
32
+ background: linear-gradient(90deg, transparent, rgba(127, 39, 4, 0.35), transparent);
33
+ }
34
+
35
+ .highlight-8 {
36
+ background: linear-gradient(90deg, transparent, rgba(127, 39, 4, 0.40), transparent);
37
+ }
38
+
39
+ .highlight-9 {
40
+ background: linear-gradient(90deg, transparent, rgba(127, 39, 4, 0.45), transparent);
41
+ }
42
+
43
+ .highlight-10 {
44
+ background: linear-gradient(90deg, transparent, rgba(127, 39, 4, 0.50), transparent);
45
+ }
46
+
47
+ </style>
tests.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from unittest import TestCase
2
+
3
+ from tokenizers.pre_tokenizers import Whitespace
4
+
5
+ from recognizers.utils import DifferenceSample
6
+
7
+
8
+ class DifferenceSampleTestCase(TestCase):
9
+
10
+ def setUp(self):
11
+ self.text_a = "Chinese shares close higher Friday."
12
+ self.text_b = "Les actions chinoises clôturent en baisse mercredi."
13
+ self.tokenizer = Whitespace()
14
+ self.encoding_a = self.tokenizer.pre_tokenize_str(self.text_a)
15
+ self.encoding_b = self.tokenizer.pre_tokenize_str(self.text_b)
16
+ self.result = DifferenceSample(
17
+ tokens_a=tuple([token[0] for token in self.encoding_a]),
18
+ tokens_b=tuple([token[0] for token in self.encoding_b]),
19
+ labels_a=tuple([0.1 for _ in range(len(self.encoding_a))]),
20
+ labels_b=tuple([0.1 for _ in range(len(self.encoding_b))]),
21
+ )
22
+
23
+ def test_add_whitespace(self):
24
+ self.result.add_whitespace(self.encoding_a, self.encoding_b)
25
+ self.assertEqual("".join(self.result.tokens_a), self.text_a)
26
+ self.assertEqual("".join(self.result.tokens_b), self.text_b)