Spaces:
Running
Running
import mimetypes | |
import os | |
import re | |
import shutil | |
import threading | |
from typing import Optional | |
import gradio as gr | |
from dotenv import load_dotenv | |
from huggingface_hub import login | |
from smolagents import ( | |
CodeAgent, | |
HfApiModel, | |
) | |
from smolagents.agent_types import AgentText, AgentImage, AgentAudio | |
from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types | |
from scripts.visual_qa import visualizer | |
AUTHORIZED_IMPORTS = [ | |
"requests", | |
"zipfile", | |
"os", | |
"pandas", | |
"numpy", | |
"sympy", | |
"json", | |
"bs4", | |
"pubchempy", | |
"xml", | |
"yahoo_finance", | |
"Bio", | |
"sklearn", | |
"scipy", | |
"pydub", | |
"io", | |
"PIL", | |
"chess", | |
"PyPDF2", | |
"pptx", | |
"torch", | |
"datetime", | |
"fractions", | |
"csv", | |
] | |
load_dotenv(override=True) | |
login(os.getenv("HF_TOKEN")) | |
append_answer_lock = threading.Lock() | |
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"} | |
model = HfApiModel( | |
custom_role_conversions=custom_role_conversions, | |
) | |
# Agent creation in a factory function | |
def create_agent(): | |
"""Creates a fresh agent instance for each session""" | |
return CodeAgent( | |
model=model, | |
tools=[visualizer], | |
max_steps=10, | |
verbosity_level=1, | |
additional_authorized_imports=AUTHORIZED_IMPORTS, | |
planning_interval=4, | |
) | |
def stream_to_gradio( | |
agent, | |
task: str, | |
reset_agent_memory: bool = False, | |
additional_args: Optional[dict] = None, | |
): | |
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" | |
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args): | |
for message in pull_messages_from_step( | |
step_log, | |
): | |
yield message | |
final_answer = step_log # Last log is the run's final_answer | |
final_answer = handle_agent_output_types(final_answer) | |
if isinstance(final_answer, AgentText): | |
yield gr.ChatMessage( | |
role="assistant", | |
content=f"**Final answer:**\n{final_answer.to_string()}\n", | |
) | |
elif isinstance(final_answer, AgentImage): | |
yield gr.ChatMessage( | |
role="assistant", | |
content={"path": final_answer.to_string(), "mime_type": "image/png"}, | |
) | |
elif isinstance(final_answer, AgentAudio): | |
yield gr.ChatMessage( | |
role="assistant", | |
content={"path": final_answer.to_string(), "mime_type": "audio/wav"}, | |
) | |
else: | |
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}") | |
class GradioUI: | |
"""A one-line interface to launch your agent in Gradio""" | |
def __init__(self, file_upload_folder: str | None = None): | |
self.file_upload_folder = file_upload_folder | |
if self.file_upload_folder is not None: | |
if not os.path.exists(file_upload_folder): | |
os.mkdir(file_upload_folder) | |
def interact_with_agent(self, prompt, messages, session_state): | |
# Get or create session-specific agent | |
if 'agent' not in session_state: | |
session_state['agent'] = create_agent() | |
# Adding monitoring | |
try: | |
# log the existence of agent memory | |
has_memory = hasattr(session_state['agent'], 'memory') | |
print(f"Agent has memory: {has_memory}") | |
if has_memory: | |
print(f"Memory type: {type(session_state['agent'].memory)}") | |
messages.append(gr.ChatMessage(role="user", content=prompt)) | |
yield messages | |
for msg in stream_to_gradio(session_state['agent'], task=prompt, reset_agent_memory=False): | |
messages.append(msg) | |
yield messages | |
yield messages | |
except Exception as e: | |
print(f"Error in interaction: {str(e)}") | |
raise | |
def upload_file( | |
self, | |
file, | |
file_uploads_log, | |
allowed_file_types=[ | |
"application/pdf", | |
"application/vnd.openxmlformats-officedocument.wordprocessingml.document", | |
"text/plain", | |
], | |
): | |
""" | |
Handle file uploads, default allowed types are .pdf, .docx, and .txt | |
""" | |
if file is None: | |
return gr.Textbox("No file uploaded", visible=True), file_uploads_log | |
try: | |
mime_type, _ = mimetypes.guess_type(file.name) | |
except Exception as e: | |
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log | |
if mime_type not in allowed_file_types: | |
return gr.Textbox("File type disallowed", visible=True), file_uploads_log | |
# Sanitize file name | |
original_name = os.path.basename(file.name) | |
sanitized_name = re.sub( | |
r"[^\w\-.]", "_", original_name | |
) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores | |
type_to_ext = {} | |
for ext, t in mimetypes.types_map.items(): | |
if t not in type_to_ext: | |
type_to_ext[t] = ext | |
# Ensure the extension correlates to the mime type | |
sanitized_name = sanitized_name.split(".")[:-1] | |
sanitized_name.append("" + type_to_ext[mime_type]) | |
sanitized_name = "".join(sanitized_name) | |
# Save the uploaded file to the specified folder | |
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name)) | |
shutil.copy(file.name, file_path) | |
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path] | |
def log_user_message(self, text_input, file_uploads_log): | |
return ( | |
text_input | |
+ ( | |
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}" | |
if len(file_uploads_log) > 0 | |
else "" | |
), | |
gr.Textbox(value="", interactive=False, placeholder="Please wait while Steps are getting populated"), | |
gr.Button(interactive=False) | |
) | |
def detect_device(self, request: gr.Request): | |
# Check whether the user device is a mobile or a computer | |
if not request: | |
return "Unknown device" | |
# Method 1: Check sec-ch-ua-mobile header | |
is_mobile_header = request.headers.get('sec-ch-ua-mobile') | |
if is_mobile_header: | |
return "Mobile" if '?1' in is_mobile_header else "Desktop" | |
# Method 2: Check user-agent string | |
user_agent = request.headers.get('user-agent', '').lower() | |
mobile_keywords = ['android', 'iphone', 'ipad', 'mobile', 'phone'] | |
if any(keyword in user_agent for keyword in mobile_keywords): | |
return "Mobile" | |
# Method 3: Check platform | |
platform = request.headers.get('sec-ch-ua-platform', '').lower() | |
if platform: | |
if platform in ['"android"', '"ios"']: | |
return "Mobile" | |
elif platform in ['"windows"', '"macos"', '"linux"']: | |
return "Desktop" | |
# Default case if no clear indicators | |
return "Desktop" | |
def launch(self, **kwargs): | |
with gr.Blocks(theme="ocean", fill_height=True) as demo: | |
# Different layouts for mobile and computer devices | |
def layout(request: gr.Request): | |
device = self.detect_device(request) | |
print(f"device - {device}") | |
# Render layout with sidebar | |
if device == "Desktop": | |
with gr.Blocks(fill_height=True, ) as sidebar_demo: | |
with gr.Sidebar(): | |
gr.Markdown("""# Cata Deep Research | |
OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions. | |
You can try a simplified version here.<br><br>""") | |
with gr.Group(): | |
gr.Markdown("**Your request**", container=True) | |
text_input = gr.Textbox(lines=3, label="Your request", container=False, | |
placeholder="Enter your prompt here and press Shift+Enter or press the button") | |
launch_research_btn = gr.Button("Run", variant="primary") | |
# If an upload folder is provided, enable the upload feature | |
if self.file_upload_folder is not None: | |
upload_file = gr.File(label="Upload a file") | |
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False) | |
upload_file.change( | |
self.upload_file, | |
[upload_file, file_uploads_log], | |
[upload_status, file_uploads_log], | |
) | |
# gr.HTML("<br><br><h4><center>Powered by:</center></h4>") | |
# with gr.Row(): | |
# gr.HTML("""<div style="display: flex; align-items: center; gap: 8px; font-family: system-ui, -apple-system, sans-serif;"> | |
# <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png" style="width: 32px; height: 32px; object-fit: contain;" alt="logo"> | |
# <a href="https://github.com/huggingface/smolagents"><b>huggingface/smolagents</b></a> | |
# </div>""") | |
# Add session state to store session-specific data | |
session_state = gr.State({}) # Initialize empty state for each session | |
stored_messages = gr.State([]) | |
file_uploads_log = gr.State([]) | |
chatbot = gr.Chatbot( | |
label="Cata-Deep-Research", | |
type="messages", | |
resizeable=False, | |
scale=1, | |
elem_id="my-chatbot" | |
) | |
text_input.submit( | |
self.log_user_message, | |
[text_input, file_uploads_log], | |
[stored_messages, text_input, launch_research_btn], | |
).then(self.interact_with_agent, | |
# Include session_state in function calls | |
[stored_messages, chatbot, session_state], | |
[chatbot] | |
).then(lambda: ( | |
gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), | |
gr.Button(interactive=True)), | |
None, | |
[text_input, launch_research_btn]) | |
launch_research_btn.click( | |
self.log_user_message, | |
[text_input, file_uploads_log], | |
[stored_messages, text_input, launch_research_btn], | |
).then(self.interact_with_agent, | |
# Include session_state in function calls | |
[stored_messages, chatbot, session_state], | |
[chatbot] | |
).then(lambda: ( | |
gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), | |
gr.Button(interactive=True)), | |
None, | |
[text_input, launch_research_btn]) | |
# Render simple layout | |
else: | |
with gr.Blocks(fill_height=True, ) as simple_demo: | |
gr.Markdown("""# Cata Deep Research | |
_Built with [smolagents](https://github.com/huggingface/smolagents)_ | |
OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions. | |
You can try a simplified version below (uses `Qwen-Coder-32B` instead of `o1`, so much less powerful than the original open-Deep-Research)π""") | |
# Add session state to store session-specific data | |
session_state = gr.State({}) # Initialize empty state for each session | |
stored_messages = gr.State([]) | |
file_uploads_log = gr.State([]) | |
chatbot = gr.Chatbot( | |
label="Cata-Deep-Research", | |
type="messages", | |
resizeable=True, | |
scale=1, | |
) | |
# If an upload folder is provided, enable the upload feature | |
if self.file_upload_folder is not None: | |
upload_file = gr.File(label="Upload a file") | |
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False) | |
upload_file.change( | |
self.upload_file, | |
[upload_file, file_uploads_log], | |
[upload_status, file_uploads_log], | |
) | |
text_input = gr.Textbox(lines=1, label="Your request", | |
placeholder="Enter your prompt here and press the button") | |
launch_research_btn = gr.Button("Run", variant="primary", ) | |
text_input.submit( | |
self.log_user_message, | |
[text_input, file_uploads_log], | |
[stored_messages, text_input, launch_research_btn], | |
).then(self.interact_with_agent, | |
# Include session_state in function calls | |
[stored_messages, chatbot, session_state], | |
[chatbot] | |
).then(lambda: ( | |
gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), | |
gr.Button(interactive=True)), | |
None, | |
[text_input, launch_research_btn]) | |
launch_research_btn.click( | |
self.log_user_message, | |
[text_input, file_uploads_log], | |
[stored_messages, text_input, launch_research_btn], | |
).then(self.interact_with_agent, | |
# Include session_state in function calls | |
[stored_messages, chatbot, session_state], | |
[chatbot] | |
).then(lambda: ( | |
gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), | |
gr.Button(interactive=True)), | |
None, | |
[text_input, launch_research_btn]) | |
demo.launch(debug=True, **kwargs) | |
GradioUI().launch() | |