File size: 3,771 Bytes
3a93ef8
 
 
b57e664
3a93ef8
 
4619ecf
3a93ef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import json
from pathlib import Path
from datasets import Dataset
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, TrainingArguments, Trainer, pipeline

# Load the Dataset
with open('./Arabic-SQuAD.json', 'r', encoding='utf-8') as file:
    soqal_dataset = json.load(file)

# Convert JSON to Hugging Face Dataset
def convert_to_dataset(dataset_dict):
    data = []
    for article in dataset_dict['data']:
        for paragraph in article['paragraphs']:
            context = paragraph['context']
            for qa in paragraph['qas']:
                question = qa['question']
                id = qa['id']
                answers = qa.get('answers', [])
                if answers:
                    text = answers[0]['text']
                    start = answers[0]['answer_start']
                    data.append({'context': context, 'question': question, 'id': id, 'answer_text': text, 'start_position': start})
    return Dataset.from_dict({'context': [d['context'] for d in data], 
                              'question': [d['question'] for d in data], 
                              'answer_text': [d['answer_text'] for d in data], 
                              'id': [d['id'] for d in data], 
                              'start_position': [d['start_position'] for d in data]})

soqal_formatted_dataset = convert_to_dataset(soqal_dataset)

# Tokenize Dataset
tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02")
# Adjust the tokenization function to include the start and end positions of the answer
def tokenize_function(examples):
    # Encode the context and question to get input_ids, attention_mask, and token_type_ids
    encodings = tokenizer(examples['context'], examples['question'], truncation=True, padding='max_length', max_length=512)
    
    # Assign the start_positions and end_positions to the encodings
    start_positions = examples['start_position']
    end_positions = [start + len(answer) for start, answer in zip(start_positions, examples['answer_text'])]
    
    encodings.update({'start_positions': start_positions, 'end_positions': end_positions})
    return encodings

# Assuming 'soqal_formatted_dataset' is of 'Dataset' type
tokenized_soqal_datasets = soqal_formatted_dataset.map(tokenize_function, batched=True)

# Splitting the Dataset
small_train_dataset = tokenized_soqal_datasets.select([i for i in range(0, len(tokenized_soqal_datasets), 2)])  # 50% train
small_eval_dataset = tokenized_soqal_datasets.select([i for i in range(1, len(tokenized_soqal_datasets), 2)])   # 50% eval


# Initialize Model and Trainer
model = AutoModelForQuestionAnswering.from_pretrained("aubmindlab/bert-base-arabertv02")

training_args = TrainingArguments(
    output_dir='./results',
    num_train_epochs=3,
    per_device_train_batch_size=4,
    per_device_eval_batch_size=4,
    warmup_steps=500,
    weight_decay=0.01,
    logging_dir='./logs',
    logging_steps=100,
    do_train=True,
    do_eval=True,
    evaluation_strategy="epoch",
    save_strategy="epoch",
    push_to_hub=False,
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=small_train_dataset,  # Use the training dataset here
    eval_dataset=small_eval_dataset,    # Use the evaluation dataset here
)


# Train and Save Model
trainer.train()
trainer.save_model("./arabic_qa_model")

# Evaluate Model
results = trainer.evaluate()
print(results)

# Test Model after Training
nlp = pipeline("question-answering", model=model, tokenizer=tokenizer)

context = "يرجى وضع النص العربي هنا الذي يحتوي على المعلومات."
question = "ما هو السؤال الذي تريد الإجابة عليه؟"

answer = nlp(question=question, context=context)
print(answer)