Spaces:
Runtime error
Runtime error
File size: 10,625 Bytes
716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f 5af82ca 716f49f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
from diffusers import (
StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline,
DPMSolverMultistepScheduler,
)
import gradio as gr
import torch
from PIL import Image
import time
import psutil
import random
start_time = time.time()
current_steps = 25
class Model:
def __init__(self, name, path=""):
self.name = name
self.path = path
if path != "":
self.pipe_t2i = StableDiffusionPipeline.from_pretrained(
path, torch_dtype=torch.float16
)
self.pipe_i2i.scheduler = DPMSolverMultistepScheduler.from_config(
self.pipe_t2i.scheduler.config
)
self.pipe_i2i = StableDiffusionImg2ImgPipeline(
**self.pipe_t2i.components, torch_dtype=torch.float16
)
else:
self.pipe_t2i = None
self.pipe_i2i = None
models = [
Model("2.2", "darkstorm2150/Protogen_v2.2_Official_Release"),
Model("3.4", "darkstorm2150/Protogen_x3.4_Official_Release"),
# Model("5.3", "darkstorm2150/Protogen_v5.3_Official_Release"),
# Model("5.8", "darkstorm2150/Protogen_x5.8_Official_Release"),
# Model("Dragon", "darkstorm2150/Protogen_Dragon_Official_Release"),
]
MODELS = {m.name: m for m in models}
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
# if torch.cuda.is_available():
# pipe = pipe.to("cuda")
# pipe.enable_xformers_memory_efficient_attention()
def error_str(error, title="Error"):
return (
f"""#### {title}
{error}"""
if error
else ""
)
def inference(
model_name,
prompt,
guidance,
steps,
n_images=1,
width=512,
height=512,
seed=0,
img=None,
strength=0.5,
neg_prompt="",
):
print(psutil.virtual_memory()) # print memory usage
if seed == 0:
seed = random.randint(0, 2147483647)
generator = torch.Generator("cuda").manual_seed(seed)
try:
if img is not None:
return (
img_to_img(
model_name,
prompt,
n_images,
neg_prompt,
img,
strength,
guidance,
steps,
width,
height,
generator,
seed,
),
f"Done. Seed: {seed}",
)
else:
return (
txt_to_img(
model_name,
prompt,
n_images,
neg_prompt,
guidance,
steps,
width,
height,
generator,
seed,
),
f"Done. Seed: {seed}",
)
except Exception as e:
return None, error_str(e)
def txt_to_img(
model_name,
prompt,
n_images,
neg_prompt,
guidance,
steps,
width,
height,
generator,
seed,
):
pipe = MODELS[model_name].pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
result = pipe(
prompt,
negative_prompt=neg_prompt,
num_images_per_prompt=n_images,
num_inference_steps=int(steps),
guidance_scale=guidance,
width=width,
height=height,
generator=generator,
)
pipe.to("cpu")
return replace_nsfw_images(result)
def img_to_img(
model_name,
prompt,
n_images,
neg_prompt,
img,
strength,
guidance,
steps,
width,
height,
generator,
seed,
):
pipe = MODELS[model_name].pipe_i2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
result = pipe(
prompt,
negative_prompt=neg_prompt,
num_images_per_prompt=n_images,
image=img,
num_inference_steps=int(steps),
strength=strength,
guidance_scale=guidance,
generator=generator,
)
pipe.to("cpu")
return replace_nsfw_images(result)
def replace_nsfw_images(results):
for i in range(len(results.images)):
if results.nsfw_content_detected[i]:
results.images[i] = Image.open("nsfw.png")
return results.images
with gr.Blocks(css="style.css") as demo:
gr.HTML(
"""
<div class="finetuned-diffusion-div">
<div>
<h1>Protogen Diffusion</h1>
</div>
<p>
Demo for multiple fine-tuned Protogen Stable Diffusion models.
</p>
<p>You can also duplicate this space and upgrade to gpu by going to settings:<br>
<a style="display:inline-block" href="https://huggingface.co/spaces/patrickvonplaten/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
model_name = gr.Dropdown(
label="Model",
choices=[m.name for m in models],
value=models[0].name,
)
with gr.Box(visible=False) as custom_model_group:
custom_model_path = gr.Textbox(
label="Custom model path",
placeholder="Path to model, e.g. darkstorm2150/Protogen_x3.4_Official_Release",
interactive=True,
)
gr.HTML(
"<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>"
)
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=2,
placeholder="Enter prompt.",
).style(container=False)
generate = gr.Button(value="Generate").style(
rounded=(False, True, True, False)
)
# image_out = gr.Image(height=512)
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[2], height="auto")
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(
container=False
)
error_output = gr.Markdown()
with gr.Column(scale=45):
with gr.Tab("Options"):
with gr.Group():
neg_prompt = gr.Textbox(
label="Negative prompt",
placeholder="What to exclude from the image",
)
n_images = gr.Slider(
label="Images", value=1, minimum=1, maximum=4, step=1
)
with gr.Row():
guidance = gr.Slider(
label="Guidance scale", value=7.5, maximum=15
)
steps = gr.Slider(
label="Steps",
value=current_steps,
minimum=2,
maximum=75,
step=1,
)
with gr.Row():
width = gr.Slider(
label="Width", value=512, minimum=64, maximum=1024, step=8
)
height = gr.Slider(
label="Height", value=512, minimum=64, maximum=1024, step=8
)
seed = gr.Slider(
0, 2147483647, label="Seed (0 = random)", value=0, step=1
)
with gr.Tab("Image to image"):
with gr.Group():
image = gr.Image(
label="Image", height=256, tool="editor", type="pil"
)
strength = gr.Slider(
label="Transformation strength",
minimum=0,
maximum=1,
step=0.01,
value=0.5,
)
inputs = [
model_name,
prompt,
guidance,
steps,
n_images,
width,
height,
seed,
image,
strength,
neg_prompt,
]
outputs = [gallery, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
ex = gr.Examples(
[
[models[2].name, "Brad Pitt with sunglasses, highly realistic", 7.5, 25],
[models[0].name, "portrait of a beautiful alyx vance half life", 10, 25],
],
inputs=[model_name, prompt, guidance, steps],
outputs=outputs,
fn=inference,
cache_examples=False,
)
gr.HTML(
"""
<div style="border-top: 1px solid #303030;">
<br>
<p>Models by <a href="https://huggingface.co/darkstorm2150">@darkstorm2150</a> and others. ❤️</p>
<p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
<p>Space by: Darkstorm (Victor Espinoza)<br>
<a href="https://www.instagram.com/officialvictorespinoza/">Instagram</a>
</div>
"""
)
print(f"Space built in {time.time() - start_time:.2f} seconds")
demo.queue(concurrency_count=1)
demo.launch()
|