Spaces:
Runtime error
Runtime error
from pydub import AudioSegment | |
from dotenv import find_dotenv, load_dotenv | |
from transformers import pipeline | |
from elevenlabs import generate, play, voices | |
from elevenlabs import set_api_key | |
from elevenlabslib import ElevenLabsUser | |
import streamlit as st | |
import uuid | |
from langchain import LLMChain, PromptTemplate, OpenAI | |
import os | |
# Load environment variables | |
load_dotenv(find_dotenv()) | |
def img2text(url): | |
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") | |
text = image_to_text(url)[0]["generated_text"] | |
print(text) | |
return text | |
def generated_story(scenario): | |
template = """ | |
You are the famous comedian and podcaster Tim Dillon. You will generate a short story in the style of his podcast using a funny narrative with explicit language and an angry rant-like tone, the story should be no more than 100 words; | |
Context: {scenario} | |
Story: | |
""" | |
prompt = PromptTemplate(template=template, input_variables=["scenario"]) | |
story_llm = LLMChain(llm=OpenAI(model_name="gpt-3.5-turbo", temperature=1), prompt=prompt, verbose=True) | |
story = story_llm.predict(scenario=scenario) | |
print(story) | |
return story | |
def textToSpeech(story): | |
# Error Handling: Print available user-generated voices | |
try: | |
available_voices = user.get_available_voices() | |
print("Available Voices:", available_voices) | |
except Exception as e: | |
print("Error fetching available voices:", e) | |
# Set API key for ElevenLabs | |
set_api_key = os.getenv("ELEVENLABS_API_KEY") | |
user = ElevenLabsUser(set_api_key) | |
voice = user.get_voice_by_ID("cgOzEASJmlEWHtXnZJ5q") | |
# Generate the audio data | |
result = voice.generate_audio_v2(story) | |
# Assuming the audio data is the first element of the tuple | |
audio_data = result[0] | |
# Save the audio data to a file in the project folder | |
random_id = str(uuid.uuid4()) | |
name = f"story_{random_id}.mp3" | |
#Save the audio data to a file in the project folder | |
with open(name, 'wb') as f: | |
f.write(audio_data) | |
return name | |
def main(): | |
st.set_page_config(page_title="Tim Dillon Image To Story", page_icon="π", layout="wide") | |
st.header("Tim Dillon Image To Story") | |
uploaded_file = st.file_uploader("Upload an image...", type="jpg") | |
if uploaded_file is not None: | |
print(uploaded_file) | |
bytes_data = uploaded_file.getvalue() | |
with open (uploaded_file.name, 'wb') as f: | |
f.write(bytes_data) | |
st.image(bytes_data, caption='Uploaded Image.', use_column_width=True) | |
scenario = img2text(uploaded_file.name) | |
story = generated_story(scenario) | |
generated_file_name = textToSpeech(story) | |
with st.expander("scenario"): | |
st.write(scenario) | |
with st.expander("story"): | |
st.write(story) | |
st.audio(generated_file_name) | |
if __name__ == "__main__": | |
main() |