aagirre92 commited on
Commit
8bf4df8
β€’
1 Parent(s): 7b5b771

initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ 09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20percent.pth filter=lfs diff=lfs merge=lfs -text
09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20percent.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4aff8750b47940bc957d7ab187889f5ff6fece8890d2b9b1f47bfc9f0eb50129
3
+ size 31314042
app.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ### 1. Import and class names setup ###
3
+ import gradio as gr
4
+ import os
5
+ from pathlib import Path
6
+ import torch
7
+
8
+ from model import create_effnetb2_model
9
+ from time import perf_counter
10
+ from typing import Tuple, Dict
11
+
12
+ from PIL import Image
13
+ import torchvision
14
+
15
+ # Setup class names (hardcoded, these shall reside in a json file or sth like that...)
16
+ class_names = ["pizza","steak","sushi"]
17
+
18
+ ### 2. Model and transforms preparation ###
19
+ effnetb2_model, effnetb2_transforms = create_effnetb2_model(num_classes=len(class_names))
20
+
21
+ # Load save weights
22
+ effnetb2_model.load_state_dict(torch.load(f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20percent.pth",
23
+ map_location=torch.device("cpu"))) # map location to cpu is a must, as we have trained our model in the GPU
24
+
25
+ ### 3. Predict function
26
+
27
+ def predict(img) -> Tuple[Dict,float]:
28
+ # Start a timer
29
+ start_time = perf_counter()
30
+
31
+ # Transform the input image for use with EffNetB2
32
+ effnetb2_transforms = torchvision.models.EfficientNet_B2_Weights.DEFAULT.transforms()
33
+ img_tensor = effnetb2_transforms(img)
34
+
35
+ # Put model in eval and inference
36
+ effnetb2_model.eval()
37
+ with torch.inference_mode():
38
+ y_logits = effnetb2_model(img_tensor.unsqueeze(dim=0))
39
+ y_pred_probs = torch.softmax(y_logits,dim=1)
40
+ y_pred_probs_list = y_pred_probs.squeeze().tolist()
41
+
42
+ # Creatae a prediction probability dictionary
43
+ pred_prob_dict = {class_names[i]:float(prob) for i,prob in enumerate(y_pred_probs_list)}
44
+
45
+ # End timer
46
+ end_time = perf_counter()
47
+
48
+ return pred_prob_dict, round(end_time-start_time,4)
49
+
50
+
51
+ ### 4. Launch app
52
+
53
+ import gradio as gr
54
+
55
+ foodvision_mini_examples_path = "examples"
56
+
57
+ example_list = [str(path) for path in foodvision_mini_examples_path.rglob("*.jpg")]
58
+
59
+ # Create title, description and article
60
+ title = "FoodVisionMini V0 πŸ•πŸ–πŸ£"
61
+ description = "An <a href='https://pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2'>EfficientNetB2</a> feature extractor computer vision model to classify images into pizza, steak or sushi<br>I have yet to improve it to label non-food images. Paciencia amigos"
62
+ article = "Created at <a href='#'>09_pytorch_model_deploy.ipynb</a> Google Colab notebook"
63
+
64
+ # Create the Gradio demo
65
+ demo = gr.Interface(fn=predict,
66
+ inputs=gr.Image(type="pil"),
67
+ outputs=[gr.Label(num_top_classes=3, label="predictions"),
68
+ gr.Number(label="Prediction time (s)")],
69
+ examples=example_list,
70
+ title=title,
71
+ description=description,
72
+ article=article)
73
+
74
+ # Launch the demo
75
+ demo.launch(debug=False,# print errors locally in local colab debug=False
76
+ share=True) # run on public url
77
+
78
+
79
+ # *** IMPORTANTE: The Flag button of the interface will create a folder named "flagged" that will contain the images and predictions of those images that someone has Flagged***
examples/1001116.jpg ADDED
examples/1523026.jpg ADDED
examples/1683426.jpg ADDED
model.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import torchvision
4
+ from torch import nn
5
+ from torchvision.models._api import WeightsEnum
6
+ from torch.hub import load_state_dict_from_url
7
+
8
+ def create_effnetb2_model(num_classes:int=3, seed:int=42):
9
+ # https://pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2
10
+
11
+ def get_state_dict(self, *args, **kwargs):
12
+ kwargs.pop("check_hash")
13
+ return load_state_dict_from_url(self.url, *args, **kwargs)
14
+ WeightsEnum.get_state_dict = get_state_dict
15
+
16
+
17
+ # 1. Setup pretrained EffNetB2 weights
18
+ effnetb2_weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT # DEFAULT = BEST
19
+
20
+ # 2. Get EffNetB2 transforms
21
+ effnetb2_transforms = effnetb2_weights.transforms()
22
+
23
+ # 3. Setup pretrained model instance
24
+ effnetb2_model = torchvision.models.efficientnet_b2(weights=effnetb2_weights)
25
+
26
+ # 4. Freeze the base layers in the model
27
+ for param in effnetb2_model.features.parameters():
28
+ param.requires_grad = False
29
+
30
+ # 5. Modify the classifier
31
+ torch.manual_seed(seed)
32
+ effnetb2_model.classifier = nn.Sequential(
33
+ nn.Dropout(p=0.3, inplace=True),
34
+ nn.Linear(in_features=1408,out_features=num_classes,bias=True)
35
+ )
36
+
37
+ return effnetb2_model, effnetb2_transforms
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch
2
+ torchvision
3
+ gradio