### 1. Import and class names setup ###
import gradio as gr
import os
from pathlib import Path
import torch
from model import create_effnetb2_model
from time import perf_counter
from typing import Tuple, Dict
from PIL import Image
import torchvision
# Setup class names (hardcoded, these shall reside in a json file or sth like that...)
class_names = ["pizza","steak","sushi"]
### 2. Model and transforms preparation ###
effnetb2_model, effnetb2_transforms = create_effnetb2_model(num_classes=len(class_names))
# Load save weights
effnetb2_model.load_state_dict(torch.load(f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20percent.pth",
map_location=torch.device("cpu"))) # map location to cpu is a must, as we have trained our model in the GPU
### 3. Predict function
def predict(img) -> Tuple[Dict,float]:
# Start a timer
start_time = perf_counter()
# Transform the input image for use with EffNetB2
effnetb2_transforms = torchvision.models.EfficientNet_B2_Weights.DEFAULT.transforms()
img_tensor = effnetb2_transforms(img)
# Put model in eval and inference
effnetb2_model.eval()
with torch.inference_mode():
y_logits = effnetb2_model(img_tensor.unsqueeze(dim=0))
y_pred_probs = torch.softmax(y_logits,dim=1)
y_pred_probs_list = y_pred_probs.squeeze().tolist()
# Creatae a prediction probability dictionary
pred_prob_dict = {class_names[i]:float(prob) for i,prob in enumerate(y_pred_probs_list)}
# End timer
end_time = perf_counter()
return pred_prob_dict, round(end_time-start_time,4)
### 4. Launch app
import gradio as gr
foodvision_mini_examples_path = "examples"
example_list = [str(path) for path in Path(foodvision_mini_examples_path).rglob("*.jpg")]
# Create title, description and article
title = "FoodVisionMini V0 🍕🍖🍣" + os.environ["test_ando_secret"]
description = "An EfficientNetB2 feature extractor computer vision model to classify images into pizza, steak or sushi
I have yet to improve it to label non-food images. Paciencia amigos"
article = "Created at 09_pytorch_model_deploy.ipynb Google Colab notebook"
# Create the Gradio demo
demo = gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs=[gr.Label(num_top_classes=3, label="predictions"),
gr.Number(label="Prediction time (s)")],
examples=example_list,
title=title,
description=description,
article=article)
# Launch the demo
demo.launch(share=True) # run on public url
# *** IMPORTANTE: The Flag button of the interface will create a folder named "flagged" that will contain the images and predictions of those images that someone has Flagged***