Spaces:
Runtime error
Runtime error
wsw
Browse files
app.py
CHANGED
@@ -7,30 +7,18 @@ import traceback
|
|
7 |
|
8 |
model_name_or_path = "ClosedCharacter/Peach-9B-8k-Roleplay"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
10 |
-
model = AutoModelForCausalLM.from_pretrained(
|
11 |
-
model_name_or_path, torch_dtype=torch.bfloat16,
|
12 |
-
trust_remote_code=True)
|
13 |
-
"""
|
14 |
-
messages = [
|
15 |
-
{"role": "system", "content": "你是黑丝御姐"},
|
16 |
-
{"role": "user", "content": "你好,你是谁"},
|
17 |
-
]
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
no_repeat_ngram_size=6,
|
26 |
-
repetition_penalty=1.1,
|
27 |
-
max_new_tokens=512)
|
28 |
|
29 |
-
|
30 |
-
|
|
|
31 |
|
32 |
-
print("First response to 'hi user first':", "你好,我是你的黑丝御姐?")
|
33 |
-
"""
|
34 |
def slow_echo(system_message, user_message):
|
35 |
try:
|
36 |
messages = [
|
@@ -38,9 +26,9 @@ def slow_echo(system_message, user_message):
|
|
38 |
{"role": "user", "content": user_message},
|
39 |
]
|
40 |
|
41 |
-
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, return_tensors="pt")
|
42 |
output = model.generate(
|
43 |
-
inputs=input_ids
|
44 |
do_sample=True,
|
45 |
temperature=0.3,
|
46 |
top_p=0.5,
|
@@ -64,7 +52,7 @@ iface = gr.Interface(
|
|
64 |
gr.Textbox(label="User Message")
|
65 |
],
|
66 |
outputs=gr.Textbox(label="Generated Response"),
|
67 |
-
title="
|
68 |
)
|
69 |
|
70 |
if __name__ == "__main__":
|
|
|
7 |
|
8 |
model_name_or_path = "ClosedCharacter/Peach-9B-8k-Roleplay"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Check if GPU is available
|
12 |
+
if torch.cuda.is_available():
|
13 |
+
device = torch.device("cuda")
|
14 |
+
else:
|
15 |
+
device = torch.device("cpu")
|
16 |
+
print("GPU not available, using CPU.")
|
|
|
|
|
|
|
17 |
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
model_name_or_path, torch_dtype=torch.bfloat16,
|
20 |
+
trust_remote_code=True).to(device)
|
21 |
|
|
|
|
|
22 |
def slow_echo(system_message, user_message):
|
23 |
try:
|
24 |
messages = [
|
|
|
26 |
{"role": "user", "content": user_message},
|
27 |
]
|
28 |
|
29 |
+
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, return_tensors="pt").to(device)
|
30 |
output = model.generate(
|
31 |
+
inputs=input_ids,
|
32 |
do_sample=True,
|
33 |
temperature=0.3,
|
34 |
top_p=0.5,
|
|
|
52 |
gr.Textbox(label="User Message")
|
53 |
],
|
54 |
outputs=gr.Textbox(label="Generated Response"),
|
55 |
+
title="Roleplay Chatbot"
|
56 |
)
|
57 |
|
58 |
if __name__ == "__main__":
|
bak2.txt
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
import time
|
6 |
+
import traceback
|
7 |
+
|
8 |
+
model_name_or_path = "ClosedCharacter/Peach-9B-8k-Roleplay"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
model_name_or_path, torch_dtype=torch.bfloat16,
|
12 |
+
trust_remote_code=True)
|
13 |
+
"""
|
14 |
+
messages = [
|
15 |
+
{"role": "system", "content": "你是黑丝御姐"},
|
16 |
+
{"role": "user", "content": "你好,你是谁"},
|
17 |
+
]
|
18 |
+
|
19 |
+
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, return_tensors="pt")
|
20 |
+
output = model.generate(
|
21 |
+
inputs=input_ids.to("cpu"),
|
22 |
+
do_sample=True,
|
23 |
+
temperature=0.3,
|
24 |
+
top_p=0.5,
|
25 |
+
no_repeat_ngram_size=6,
|
26 |
+
repetition_penalty=1.1,
|
27 |
+
max_new_tokens=512)
|
28 |
+
|
29 |
+
generated_response = tokenizer.decode(output[0])
|
30 |
+
print("Generated response:", generated_response)
|
31 |
+
|
32 |
+
print("First response to 'hi user first':", "你好,我是你的黑丝御姐?")
|
33 |
+
"""
|
34 |
+
def slow_echo(system_message, user_message):
|
35 |
+
try:
|
36 |
+
messages = [
|
37 |
+
{"role": "system", "content": system_message},
|
38 |
+
{"role": "user", "content": user_message},
|
39 |
+
]
|
40 |
+
|
41 |
+
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, return_tensors="pt")
|
42 |
+
output = model.generate(
|
43 |
+
inputs=input_ids.to("cpu"),
|
44 |
+
do_sample=True,
|
45 |
+
temperature=0.3,
|
46 |
+
top_p=0.5,
|
47 |
+
no_repeat_ngram_size=6,
|
48 |
+
repetition_penalty=1.1,
|
49 |
+
max_new_tokens=512)
|
50 |
+
|
51 |
+
generated_response = tokenizer.decode(output[0])
|
52 |
+
|
53 |
+
for i in range(len(generated_response)):
|
54 |
+
time.sleep(0.05)
|
55 |
+
yield generated_response[: i + 1]
|
56 |
+
except Exception as e:
|
57 |
+
error_message = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
58 |
+
yield error_message
|
59 |
+
|
60 |
+
iface = gr.Interface(
|
61 |
+
fn=slow_echo,
|
62 |
+
inputs=[
|
63 |
+
gr.Textbox(label="System Message"),
|
64 |
+
gr.Textbox(label="User Message")
|
65 |
+
],
|
66 |
+
outputs=gr.Textbox(label="Generated Response"),
|
67 |
+
title="roleplay Chatbot"
|
68 |
+
)
|
69 |
+
|
70 |
+
if __name__ == "__main__":
|
71 |
+
iface.launch()
|