Spaces:
Sleeping
Sleeping
abdouramandalil
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import time
|
5 |
+
import plotly.express as px
|
6 |
+
|
7 |
+
df = pd.read_csv('bank.csv')
|
8 |
+
|
9 |
+
st.set_page_config(
|
10 |
+
page_title = 'Real Time Data Science Dashboard',
|
11 |
+
page_icon = '✅',
|
12 |
+
layout = 'wide'
|
13 |
+
)
|
14 |
+
#Dashboard Title
|
15 |
+
st.title('Real Time/ Live Data Sceince Dashboard')
|
16 |
+
#Selection sur le type de job
|
17 |
+
job_filter = st.selectbox('Select The Job',pd.unique(df['job']))
|
18 |
+
|
19 |
+
#Filtrage du job
|
20 |
+
df = df[df["job"] == job_filter]
|
21 |
+
|
22 |
+
#Creer des KPI
|
23 |
+
avg_age = np.mean(df.age)
|
24 |
+
count_married = int(df[(df.marital == 'married')]['marital'].count())
|
25 |
+
balance = np.mean(df.balance)
|
26 |
+
|
27 |
+
kp1,kp2,kp3 = st.columns(3)
|
28 |
+
kp1.metric(label='Age ⏳',value = round(avg_age),delta = round(avg_age)-10)
|
29 |
+
kp2.metric(label="Married Count 💍",value = int(count_married),delta=-10+count_married)
|
30 |
+
kp3.metric(label="A/C Balanc $",value = f"$ {round(balance,2)}"
|
31 |
+
,delta = -round(balance/count_married)*100)
|
32 |
+
|
33 |
+
fig_col1,fig_col2 = st.columns(2)
|
34 |
+
with fig_col1:
|
35 |
+
st.markdown("### First Chart")
|
36 |
+
fig1 = px.density_heatmap(data_frame=df,y='age',x='marital')
|
37 |
+
st.write(fig1)
|
38 |
+
with fig_col2:
|
39 |
+
st.markdown("### Second Chart")
|
40 |
+
fig2 = px.histogram(data_frame = df,x='age')
|
41 |
+
st.write(fig2)
|
42 |
+
st.markdown("### Detailed Data view")
|
43 |
+
st.dataframe(df)
|
44 |
+
#time.sleep(1)
|
45 |
+
|