Spaces:
Sleeping
Sleeping
abdulllah01
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
|
3 |
+
|
4 |
+
# Load the model and tokenizer from your Hugging Face Hub repository
|
5 |
+
model_checkpoint = "abdulllah01/checkpoints" # Replace with your actual checkpoint
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
7 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_checkpoint)
|
8 |
+
|
9 |
+
# Create a pipeline for question answering
|
10 |
+
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
11 |
+
|
12 |
+
# Streamlit UI setup
|
13 |
+
st.title("Question Answering App")
|
14 |
+
st.write("Enter a context and ask a question based on that context.")
|
15 |
+
|
16 |
+
# Text area for context input
|
17 |
+
context = st.text_area("Context:", "")
|
18 |
+
|
19 |
+
# Text input for the question
|
20 |
+
question = st.text_input("Question:", "")
|
21 |
+
|
22 |
+
if st.button("Get Answer"):
|
23 |
+
if context and question:
|
24 |
+
# Generate the answer using the pipeline
|
25 |
+
result = qa_pipeline(question=question, context=context)
|
26 |
+
answer = result['answer']
|
27 |
+
st.write("**Answer:**", answer)
|
28 |
+
else:
|
29 |
+
st.write("Please enter both context and question.")
|