Spaces:
Runtime error
Runtime error
import math | |
import os | |
from io import BytesIO | |
import gradio as gr | |
import cv2 | |
from PIL import Image | |
import requests | |
from transformers import pipeline | |
from pydub import AudioSegment | |
from faster_whisper import WhisperModel | |
import joblib | |
import mediapipe as mp | |
import numpy as np | |
import pandas as pd | |
import moviepy.editor as mpe | |
import time | |
body_lang_model = joblib.load('body_language.pkl') | |
mp_holistic = mp.solutions.holistic | |
holistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) | |
mp_face_mesh = mp.solutions.face_mesh | |
face_mesh = mp_face_mesh.FaceMesh(min_detection_confidence=0.5, min_tracking_confidence=0.5) | |
theme = gr.themes.Base( | |
primary_hue="cyan", | |
secondary_hue="blue", | |
neutral_hue="slate", | |
) | |
model = WhisperModel("small", device="cpu", compute_type="int8") | |
API_KEY = os.getenv('HF_API_KEY') | |
pipe1 = pipeline("image-classification", model="dima806/facial_emotions_image_detection") | |
pipe2 = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions") | |
# pipe3 = pipeline("audio-classification", model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition") | |
# FACE_API_URL = "https://api-inference.huggingface.co/models/dima806/facial_emotions_image_detection" | |
# TEXT_API_URL = "https://api-inference.huggingface.co/models/SamLowe/roberta-base-go_emotions" | |
AUDIO_API_URL = "https://api-inference.huggingface.co/models/ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition" | |
headers = {"Authorization": "Bearer " + API_KEY + ""} | |
def extract_frames(video_path): | |
clip = mpe.VideoFileClip(video_path) | |
clip.write_videofile('mp4file.mp4', fps=60) | |
cap = cv2.VideoCapture('mp4file.mp4') | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
# try: | |
# while True: | |
# ret, frame = cap.read() | |
# if not ret: | |
# break | |
# total_frames += 1 | |
# except Exception as e: | |
# print("Done") | |
# cap.release() | |
# time.sleep(3) | |
# cap = cv2.VideoCapture(video_path) | |
interval = int(fps/2) | |
print(interval, total_frames) | |
images = [] | |
result = [] | |
distract_count = 0 | |
total_count = 0 | |
output_list = [] | |
for i in range(0, total_frames, interval): | |
total_count += 1 | |
cap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
ret, frame = cap.read() | |
if ret: | |
image = cv2.cvtColor(cv2.flip(frame, 1), cv2.COLOR_BGR2RGB) | |
image.flags.writeable = False | |
results = face_mesh.process(image) | |
image.flags.writeable = True | |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
img_h, img_w, img_c = image.shape | |
face_3d = [] | |
face_2d = [] | |
flag = False | |
if results.multi_face_landmarks: | |
for face_landmarks in results.multi_face_landmarks: | |
for idx, lm in enumerate(face_landmarks.landmark): | |
if idx == 33 or idx == 263 or idx == 1 or idx == 61 or idx == 291 or idx == 199: | |
if idx == 1: | |
nose_2d = (lm.x * img_w, lm.y * img_h) | |
nose_3d = (lm.x * img_w, lm.y * img_h, lm.z * 3000) | |
x, y = int(lm.x * img_w), int(lm.y * img_h) | |
face_2d.append([x, y]) | |
face_3d.append([x, y, lm.z]) | |
face_2d = np.array(face_2d, dtype=np.float64) | |
face_3d = np.array(face_3d, dtype=np.float64) | |
focal_length = 1 * img_w | |
cam_matrix = np.array([ [focal_length, 0, img_h / 2], | |
[0, focal_length, img_w / 2], | |
[0, 0, 1]]) | |
dist_matrix = np.zeros((4, 1), dtype=np.float64) | |
success, rot_vec, trans_vec = cv2.solvePnP(face_3d, face_2d, cam_matrix, dist_matrix) | |
rmat, jac = cv2.Rodrigues(rot_vec) | |
angles, mtxR, mtxQ, Qx, Qy, Qz = cv2.RQDecomp3x3(rmat) | |
x = angles[0] * 360 | |
y = angles[1] * 360 | |
z = angles[2] * 360 | |
if y < -7 or y > 7 or x < -7 or x > 7: | |
flag = True | |
else: | |
flag = False | |
if flag == True: | |
distract_count += 1 | |
image2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
results2 = holistic.process(image2) | |
pose = results2.pose_landmarks.landmark | |
pose_row = list(np.array([[landmark.x, landmark.y, landmark.z, landmark.visibility] for landmark in pose]).flatten()) | |
face = results2.face_landmarks.landmark | |
face_row = list(np.array([[landmark.x, landmark.y, landmark.z, landmark.visibility] for landmark in face]).flatten()) | |
row = pose_row+face_row | |
X = pd.DataFrame([row]) | |
body_language_class = body_lang_model.predict(X)[0] | |
body_language_prob = body_lang_model.predict_proba(X)[0] | |
output_dict = {} | |
for class_name, prob in zip(body_lang_model.classes_, body_language_prob): | |
output_dict[class_name] = prob | |
output_list.append(output_dict) | |
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
response = pipe1(pil_image) | |
temp = {} | |
for ele in response: | |
label, score = ele.values() | |
temp[label] = score | |
result.append(temp) | |
images.append((cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), f"Sentiments: {temp}, Distraction: {1 if flag == True else 0}")) | |
distraction_rate = distract_count/total_count | |
total_bad_prob = 0 | |
total_good_prob = 0 | |
for output_dict in output_list: | |
total_bad_prob += output_dict['Bad'] | |
total_good_prob += output_dict['Good'] | |
num_frames = len(output_list) | |
avg_bad_prob = total_bad_prob / num_frames | |
avg_good_prob = total_good_prob / num_frames | |
final_output = {'Bad': avg_bad_prob, 'Good': avg_good_prob} | |
print("Frame extraction completed.") | |
cap.release() | |
return images, result, final_output, distraction_rate | |
def analyze_sentiment(text): | |
response = pipe2(text) | |
sentiment_results = {} | |
for ele in response: | |
label, score = ele.values() | |
sentiment_results[label] = score | |
# sentiment_list = response.json()[0] | |
# sentiment_results = {results['label']: results['score'] for results in sentiment_list} | |
return sentiment_results | |
def video_to_audio(input_video): | |
frames_images, frames_sentiments, body_language, distraction_rate = extract_frames(input_video) | |
cap = cv2.VideoCapture(input_video) | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
audio = AudioSegment.from_file(input_video) | |
audio_binary = audio.export(format="wav").read() | |
audio_bytesio = BytesIO(audio_binary) | |
audio_bytesio2 = BytesIO(audio_binary) | |
segments, info = model.transcribe(audio_bytesio, beam_size=5) | |
response = requests.post(AUDIO_API_URL, headers=headers, data=audio_bytesio2) | |
# response = pipe3(audio_bytesio) | |
# audio_list = list(response.json()) | |
# formatted_response = {results['label'] : results['score'] for results in audio_list} | |
print(response.json()) | |
formatted_response = {} | |
for ele in response.json(): | |
score, label = ele.values() | |
formatted_response[label] = score | |
# print("Detected language '%s' with probability %f" % (info.language, info.language_probability)) | |
transcript = '' | |
audio_divide_sentiment = '' | |
video_sentiment_markdown = '' | |
video_sentiment_final = [] | |
final_output = [] | |
for segment in segments: | |
transcript = transcript + segment.text + " " | |
transcript_segment_sentiment = analyze_sentiment(segment.text) | |
audio_divide_sentiment += "[%.2fs -> %.2fs] %s : %s`\`" % (segment.start, segment.end, segment.text, transcript_segment_sentiment) | |
emotion_totals = { | |
'admiration': 0.0, | |
'amusement': 0.0, | |
'angry': 0.0, | |
'annoyance': 0.0, | |
'approval': 0.0, | |
'caring': 0.0, | |
'confusion': 0.0, | |
'curiosity': 0.0, | |
'desire': 0.0, | |
'disappointment': 0.0, | |
'disapproval': 0.0, | |
'disgust': 0.0, | |
'embarrassment': 0.0, | |
'excitement': 0.0, | |
'fear': 0.0, | |
'gratitude': 0.0, | |
'grief': 0.0, | |
'happy': 0.0, | |
'love': 0.0, | |
'nervousness': 0.0, | |
'optimism': 0.0, | |
'pride': 0.0, | |
'realization': 0.0, | |
'relief': 0.0, | |
'remorse': 0.0, | |
'sad': 0.0, | |
'surprise': 0.0, | |
'neutral': 0.0 | |
} | |
counter = 0 | |
for i in range(math.ceil(segment.start), math.floor(segment.end)): | |
for emotion in frames_sentiments[i].keys(): | |
emotion_totals[emotion] += frames_sentiments[i].get(emotion) | |
counter += 1 | |
for emotion in emotion_totals: | |
emotion_totals[emotion] /= counter | |
video_sentiment_final.append(emotion_totals) | |
video_segment_sentiment = {key: value for key, value in emotion_totals.items() if value != 0.0} | |
video_sentiment_markdown += f"Frame {fps*math.ceil(segment.start)} - Frame {fps*math.floor(segment.end)} : {video_segment_sentiment}`\`" | |
segment_finals = {segment.id: (segment.text, segment.start, segment.end, transcript_segment_sentiment, video_segment_sentiment)} | |
final_output.append(segment_finals) | |
total_transcript_sentiment = {key: value for key, value in analyze_sentiment(transcript).items() if value >= 0.01} | |
emotion_finals = { | |
'admiration': 0.0, | |
'amusement': 0.0, | |
'angry': 0.0, | |
'annoyance': 0.0, | |
'approval': 0.0, | |
'caring': 0.0, | |
'confusion': 0.0, | |
'curiosity': 0.0, | |
'desire': 0.0, | |
'disappointment': 0.0, | |
'disapproval': 0.0, | |
'disgust': 0.0, | |
'embarrassment': 0.0, | |
'excitement': 0.0, | |
'fear': 0.0, | |
'gratitude': 0.0, | |
'grief': 0.0, | |
'happy': 0.0, | |
'love': 0.0, | |
'nervousness': 0.0, | |
'optimism': 0.0, | |
'pride': 0.0, | |
'realization': 0.0, | |
'relief': 0.0, | |
'remorse': 0.0, | |
'sad': 0.0, | |
'surprise': 0.0, | |
'neutral': 0.0 | |
} | |
for i in range(0, video_sentiment_final.__len__()-1): | |
for emotion in video_sentiment_final[i].keys(): | |
emotion_finals[emotion] += video_sentiment_final[i].get(emotion) | |
for emotion in emotion_finals: | |
emotion_finals[emotion] /= video_sentiment_final.__len__() | |
emotion_finals = {key: value for key, value in emotion_finals.items() if value != 0.0} | |
print("Processing Completed!!") | |
payload = { | |
'from': 'gradio', | |
'emotions_final': emotion_finals, | |
'body_language': body_language, | |
'distraction_rate': distraction_rate, | |
'formatted_response': formatted_response, | |
'total_transcript_sentiment': total_transcript_sentiment | |
} | |
# response = requests.post('http://127.0.0.1:5000/interview', json=payload) | |
print(payload) | |
return str(final_output), frames_images, total_transcript_sentiment, audio_divide_sentiment, formatted_response, video_sentiment_markdown, emotion_finals, body_language, {'Distraction Rate': distraction_rate} | |
with gr.Blocks(theme=theme, css=".gradio-container { background: rgba(255, 255, 255, 0.2) !important; box-shadow: 0 8px 32px 0 rgba( 31, 38, 135, 0.37 ) !important; backdrop-filter: blur( 10px ) !important; -webkit-backdrop-filter: blur( 10px ) !important; border-radius: 10px !important; border: 1px solid rgba( 0, 0, 0, 0.5 ) !important;}") as Video: | |
with gr.Column(): | |
gr.Markdown("""# Interview AI Video Processing Model""") | |
with gr.Row(): | |
gr.Markdown(""" | |
### 🤖 A cross-model ML model for Video processing in Interview AI Video Processing involves combining different machine learning models to analyze sentiments expressed in healthcare-related videos. | |
- Facial Expression Recognition Model [Google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) 😊😢😰 | |
- Speech Recognition Model [OpenAI/Whisper](https://github.com/openai/whisper) 🗣️🎤 | |
- Text Analysis Model [RoBERTa-base-go-emotions](https://huggingface.co/SamLowe/roberta-base-go_emotions) 📝📜 | |
- Contextual Understanding Model (Sentiment Analysis) 🔄🌐 | |
""") | |
gr.Markdown("""### By combining the outputs of these models, the cross-model approach aims to capture a more comprehensive view of the sentiments within the interview videos. This way, candidates can gain insights into thier interview experiences and emotions, facilitating better understanding and improvements in actual interviews. """) | |
with gr.Row(): | |
with gr.Column(): | |
input_video = gr.Video(sources=["upload", "webcam"], format='mp4') | |
button = gr.Button("Process", variant="primary") | |
gr.Examples(inputs=input_video, examples=[os.path.join(os.path.dirname(__file__), "test_video_1.mp4")]) | |
with gr.Column(): | |
with gr.Row(): | |
video_sentiment_final = gr.Label(label="Video Sentiment Score") | |
speech_emotions = gr.Label(label="Audio Emotion Score") | |
with gr.Row(): | |
overall_transcript_score = gr.Label(label="Overall Transcript Score") | |
body_language = gr.Label(label="Body Language") | |
distraction_rate = gr.Label(label="Distraction Rate") | |
with gr.Column(): | |
frames_gallery = gr.Gallery(label="Video Frames", show_label=True, elem_id="gallery", columns=[3], rows=[1], object_fit="contain", height="auto") | |
with gr.Accordion(label="JSON detailed Responses", open=False): | |
json_output = gr.Textbox(label="JSON Output", info="Overall scores of the above video in segments.", show_label=True, lines=5, show_copy_button=True, interactive=False) | |
audio_sentiment = gr.Textbox(label="Audio Sentiments", info="Outputs of Audio Processing from the video.", show_label=True, lines=5, show_copy_button=True, interactive=False) | |
video_sentiment_markdown = gr.Textbox(label="Video Sentiments", info="Outputs of Video Frames processing from the video.", show_label=True, lines=5, show_copy_button=True, interactive=False) | |
button.click( | |
fn=video_to_audio, | |
inputs=input_video, | |
outputs=[json_output, frames_gallery, overall_transcript_score, audio_sentiment, speech_emotions, video_sentiment_markdown, video_sentiment_final, body_language, distraction_rate] | |
) | |
Video.launch() |