Spaces:
Runtime error
Runtime error
File size: 7,753 Bytes
522606a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import glob
import io
import numpy as np
import re
import os
import random
from io import BytesIO
from uuid import uuid4
import sqlite3
import h5py
import torch
from PIL import Image
from torch.utils.data import Dataset
from torchvision.transforms import RandomCrop
from torchvision.transforms.functional import to_tensor
class ImageH5Data(Dataset):
def __init__(self, h5py_file, folder_name):
self.data = h5py.File(h5py_file, 'r')[folder_name]
self.data_hr = self.data['train_hr']
self.data_lr = self.data['train_lr']
self.len_imgs = len(self.data_hr)
self.h5py_file = h5py_file
self.folder_name = folder_name
def __len__(self):
# with h5py.File(self.h5py_file, 'r') as f:
# return len(f[self.folder_name]['train_lr'])
return self.len_imgs
def __getitem__(self, index):
# with h5py.File(self.h5py_file, 'r') as f:
# data_lr = f[self.folder_name]['train_lr'][index]
# data_hr = f[self.folder_name]['train_lr'][index]
#
# return data_lr, data_hr
return self.data_lr[index], self.data_hr[index]
class ImageData(Dataset):
def __init__(self,
img_folder,
patch_size=96,
shrink_size=2,
noise_level=1,
down_sample_method=None,
color_mod='RGB',
dummy_len=None):
self.img_folder = img_folder
all_img = glob.glob(self.img_folder + "/**", recursive=True)
self.img = list(filter(lambda x: x.endswith('png') or x.endswith("jpg") or x.endswith("jpeg"), all_img))
self.total_img = len(self.img)
self.dummy_len = dummy_len if dummy_len is not None else self.total_img
self.random_cropper = RandomCrop(size=patch_size)
self.color_mod = color_mod
self.img_augmenter = ImageAugment(shrink_size, noise_level, down_sample_method)
def get_img_patches(self, img_file):
img_pil = Image.open(img_file).convert("RGB")
img_patch = self.random_cropper(img_pil)
lr_hr_patches = self.img_augmenter.process(img_patch)
return lr_hr_patches
def __len__(self):
return self.dummy_len # len(self.img)
def __getitem__(self, index):
idx = random.choice(range(0, self.total_img))
img = self.img[idx]
patch = self.get_img_patches(img)
if self.color_mod == 'RGB':
lr_img = patch[0].convert("RGB")
hr_img = patch[1].convert("RGB")
elif self.color_mod == 'YCbCr':
lr_img, _, _ = patch[0].convert('YCbCr').split()
hr_img, _, _ = patch[1].convert('YCbCr').split()
else:
raise KeyError('Either RGB or YCbCr')
return to_tensor(lr_img), to_tensor(hr_img)
class Image2Sqlite(ImageData):
def __getitem__(self, item):
img = self.img[item]
lr_hr_patch = self.get_img_patches(img)
if self.color_mod == 'RGB':
lr_img = lr_hr_patch[0].convert("RGB")
hr_img = lr_hr_patch[1].convert("RGB")
elif self.color_mod == 'YCbCr':
lr_img, _, _ = lr_hr_patch[0].convert('YCbCr').split()
hr_img, _, _ = lr_hr_patch[1].convert('YCbCr').split()
else:
raise KeyError('Either RGB or YCbCr')
lr_byte = self.convert_to_bytevalue(lr_img)
hr_byte = self.convert_to_bytevalue(hr_img)
return [lr_byte, hr_byte]
@staticmethod
def convert_to_bytevalue(pil_img):
img_byte = io.BytesIO()
pil_img.save(img_byte, format='png')
return img_byte.getvalue()
class ImageDBData(Dataset):
def __init__(self, db_file, db_table="images", lr_col="lr_img", hr_col="hr_img", max_images=None):
self.db_file = db_file
self.db_table = db_table
self.lr_col = lr_col
self.hr_col = hr_col
self.total_images = self.get_num_rows(max_images)
# self.lr_hr_images = self.get_all_images()
def __len__(self):
return self.total_images
# def get_all_images(self):
# with sqlite3.connect(self.db_file) as conn:
# cursor = conn.cursor()
# cursor.execute(f"SELECT * FROM {self.db_table} LIMIT {self.total_images}")
# return cursor.fetchall()
def get_num_rows(self, max_images):
with sqlite3.connect(self.db_file) as conn:
cursor = conn.cursor()
cursor.execute(f"SELECT MAX(ROWID) FROM {self.db_table}")
db_rows = cursor.fetchone()[0]
if max_images:
return min(max_images, db_rows)
else:
return db_rows
def __getitem__(self, item):
# lr, hr = self.lr_hr_images[item]
# lr = Image.open(io.BytesIO(lr))
# hr = Image.open(io.BytesIO(hr))
# return to_tensor(lr), to_tensor(hr)
# note sqlite rowid starts with 1
with sqlite3.connect(self.db_file) as conn:
cursor = conn.cursor()
cursor.execute(f"SELECT {self.lr_col}, {self.hr_col} FROM {self.db_table} WHERE ROWID={item + 1}")
lr, hr = cursor.fetchone()
lr = Image.open(io.BytesIO(lr)).convert("RGB")
hr = Image.open(io.BytesIO(hr)).convert("RGB")
# lr = np.array(lr) # use scale [0, 255] instead of [0,1]
# hr = np.array(hr)
return to_tensor(lr), to_tensor(hr)
class ImagePatchData(Dataset):
def __init__(self, lr_folder, hr_folder):
self.lr_folder = lr_folder
self.hr_folder = hr_folder
self.lr_imgs = glob.glob(os.path.join(lr_folder, "**"))
self.total_imgs = len(self.lr_imgs)
def __len__(self):
return self.total_imgs
def __getitem__(self, item):
lr_file = self.lr_imgs[item]
hr_path = re.sub("lr", 'hr', os.path.dirname(lr_file))
filename = os.path.basename(lr_file)
hr_file = os.path.join(hr_path, filename)
return to_tensor(Image.open(lr_file)), to_tensor(Image.open(hr_file))
class ImageAugment:
def __init__(self,
shrink_size=2,
noise_level=1,
down_sample_method=None
):
# noise_level (int): 0: no noise; 1: 75-95% quality; 2:50-75%
if noise_level == 0:
self.noise_level = [0, 0]
elif noise_level == 1:
self.noise_level = [5, 25]
elif noise_level == 2:
self.noise_level = [25, 50]
else:
raise KeyError("Noise level should be either 0, 1, 2")
self.shrink_size = shrink_size
self.down_sample_method = down_sample_method
def shrink_img(self, hr_img):
if self.down_sample_method is None:
resample_method = random.choice([Image.BILINEAR, Image.BICUBIC, Image.LANCZOS])
else:
resample_method = self.down_sample_method
img_w, img_h = tuple(map(lambda x: int(x / self.shrink_size), hr_img.size))
lr_img = hr_img.resize((img_w, img_h), resample_method)
return lr_img
def add_jpeg_noise(self, hr_img):
quality = 100 - round(random.uniform(*self.noise_level))
lr_img = BytesIO()
hr_img.save(lr_img, format='JPEG', quality=quality)
lr_img.seek(0)
lr_img = Image.open(lr_img)
return lr_img
def process(self, hr_patch_pil):
lr_patch_pil = self.shrink_img(hr_patch_pil)
if self.noise_level[1] > 0:
lr_patch_pil = self.add_jpeg_noise(lr_patch_pil)
return lr_patch_pil, hr_patch_pil
def up_sample(self, img, resample):
width, height = img.size
return img.resize((self.shrink_size * width, self.shrink_size * height), resample=resample)
|