Spaces:
Runtime error
Runtime error
from contextlib import contextmanager | |
from math import sqrt, log | |
import torch | |
import torch.nn as nn | |
# import warnings | |
# warnings.simplefilter('ignore') | |
class BaseModule(nn.Module): | |
def __init__(self): | |
self.act_fn = None | |
super(BaseModule, self).__init__() | |
def selu_init_params(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d) and m.weight.requires_grad: | |
m.weight.data.normal_(0.0, 1.0 / sqrt(m.weight.numel())) | |
if m.bias is not None: | |
m.bias.data.fill_(0) | |
elif isinstance(m, nn.BatchNorm2d) and m.weight.requires_grad: | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
elif isinstance(m, nn.Linear) and m.weight.requires_grad: | |
m.weight.data.normal_(0, 1.0 / sqrt(m.weight.numel())) | |
m.bias.data.zero_() | |
def initialize_weights_xavier_uniform(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d) and m.weight.requires_grad: | |
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu') | |
nn.init.xavier_uniform_(m.weight) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
elif isinstance(m, nn.BatchNorm2d) and m.weight.requires_grad: | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
def load_state_dict(self, state_dict, strict=True, self_state=False): | |
own_state = self_state if self_state else self.state_dict() | |
for name, param in state_dict.items(): | |
if name in own_state: | |
try: | |
own_state[name].copy_(param.data) | |
except Exception as e: | |
print("Parameter {} fails to load.".format(name)) | |
print("-----------------------------------------") | |
print(e) | |
else: | |
print("Parameter {} is not in the model. ".format(name)) | |
def set_activation_inplace(self): | |
if hasattr(self, 'act_fn') and hasattr(self.act_fn, 'inplace'): | |
# save memory | |
self.act_fn.inplace = True | |
yield | |
self.act_fn.inplace = False | |
else: | |
yield | |
def total_parameters(self): | |
total = sum([i.numel() for i in self.parameters()]) | |
trainable = sum([i.numel() for i in self.parameters() if i.requires_grad]) | |
print("Total parameters : {}. Trainable parameters : {}".format(total, trainable)) | |
return total | |
def forward(self, *x): | |
raise NotImplementedError | |
class ResidualFixBlock(BaseModule): | |
def __init__(self, in_channels, out_channels, kernel_size=3, padding=1, dilation=1, | |
groups=1, activation=nn.SELU(), conv=nn.Conv2d): | |
super(ResidualFixBlock, self).__init__() | |
self.act_fn = activation | |
self.m = nn.Sequential( | |
conv(in_channels, out_channels, kernel_size, padding=padding, dilation=dilation, groups=groups), | |
activation, | |
# conv(out_channels, out_channels, kernel_size, padding=(kernel_size - 1) // 2, dilation=1, groups=groups), | |
conv(in_channels, out_channels, kernel_size, padding=padding, dilation=dilation, groups=groups), | |
) | |
def forward(self, x): | |
out = self.m(x) | |
return self.act_fn(out + x) | |
class ConvBlock(BaseModule): | |
def __init__(self, in_channels, out_channels, kernel_size=3, padding=1, dilation=1, groups=1, | |
activation=nn.SELU(), conv=nn.Conv2d): | |
super(ConvBlock, self).__init__() | |
self.m = nn.Sequential(conv(in_channels, out_channels, kernel_size, padding=padding, | |
dilation=dilation, groups=groups), | |
activation) | |
def forward(self, x): | |
return self.m(x) | |
class UpSampleBlock(BaseModule): | |
def __init__(self, channels, scale, activation, atrous_rate=1, conv=nn.Conv2d): | |
assert scale in [2, 4, 8], "Currently UpSampleBlock supports 2, 4, 8 scaling" | |
super(UpSampleBlock, self).__init__() | |
m = nn.Sequential( | |
conv(channels, 4 * channels, kernel_size=3, padding=atrous_rate, dilation=atrous_rate), | |
activation, | |
nn.PixelShuffle(2) | |
) | |
self.m = nn.Sequential(*[m for _ in range(int(log(scale, 2)))]) | |
def forward(self, x): | |
return self.m(x) | |
class SpatialChannelSqueezeExcitation(BaseModule): | |
# https://arxiv.org/abs/1709.01507 | |
# https://arxiv.org/pdf/1803.02579v1.pdf | |
def __init__(self, in_channel, reduction=16, activation=nn.ReLU()): | |
super(SpatialChannelSqueezeExcitation, self).__init__() | |
linear_nodes = max(in_channel // reduction, 4) # avoid only 1 node case | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.channel_excite = nn.Sequential( | |
# check the paper for the number 16 in reduction. It is selected by experiment. | |
nn.Linear(in_channel, linear_nodes), | |
activation, | |
nn.Linear(linear_nodes, in_channel), | |
nn.Sigmoid() | |
) | |
self.spatial_excite = nn.Sequential( | |
nn.Conv2d(in_channel, 1, kernel_size=1, stride=1, padding=0, bias=False), | |
nn.Sigmoid() | |
) | |
def forward(self, x): | |
b, c, h, w = x.size() | |
# | |
channel = self.avg_pool(x).view(b, c) | |
# channel = F.avg_pool2d(x, kernel_size=(h,w)).view(b,c) # used for porting to other frameworks | |
cSE = self.channel_excite(channel).view(b, c, 1, 1) | |
x_cSE = torch.mul(x, cSE) | |
# spatial | |
sSE = self.spatial_excite(x) | |
x_sSE = torch.mul(x, sSE) | |
# return x_sSE | |
return torch.add(x_cSE, x_sSE) | |
class PartialConv(nn.Module): | |
# reference: | |
# Image Inpainting for Irregular Holes Using Partial Convolutions | |
# http://masc.cs.gmu.edu/wiki/partialconv/show?time=2018-05-24+21%3A41%3A10 | |
# https://github.com/naoto0804/pytorch-inpainting-with-partial-conv/blob/master/net.py | |
# https://github.com/SeitaroShinagawa/chainer-partial_convolution_image_inpainting/blob/master/common/net.py | |
# partial based padding | |
# https: // github.com / NVIDIA / partialconv / blob / master / models / pd_resnet.py | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1, | |
padding=0, dilation=1, groups=1, bias=True): | |
super(PartialConv, self).__init__() | |
self.feature_conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, | |
padding, dilation, groups, bias) | |
self.mask_conv = nn.Conv2d(1, 1, kernel_size, stride, | |
padding, dilation, groups, bias=False) | |
self.window_size = self.mask_conv.kernel_size[0] * self.mask_conv.kernel_size[1] | |
torch.nn.init.constant_(self.mask_conv.weight, 1.0) | |
for param in self.mask_conv.parameters(): | |
param.requires_grad = False | |
def forward(self, x): | |
output = self.feature_conv(x) | |
if self.feature_conv.bias is not None: | |
output_bias = self.feature_conv.bias.view(1, -1, 1, 1).expand_as(output) | |
else: | |
output_bias = torch.zeros_like(output, device=x.device) | |
with torch.no_grad(): | |
ones = torch.ones(1, 1, x.size(2), x.size(3), device=x.device) | |
output_mask = self.mask_conv(ones) | |
output_mask = self.window_size / output_mask | |
output = (output - output_bias) * output_mask + output_bias | |
return output | |