diffuse-custom / Waifu2x /utils /prepare_images.py
Jackflack09's picture
Duplicate from YeOldHermit/Super-Resolution-Anime-Diffusion
522606a
import copy
import glob
import os
from multiprocessing.dummy import Pool as ThreadPool
from PIL import Image
from torchvision.transforms.functional import to_tensor
from ..Models import *
class ImageSplitter:
# key points:
# Boarder padding and over-lapping img splitting to avoid the instability of edge value
# Thanks Waifu2x's autorh nagadomi for suggestions (https://github.com/nagadomi/waifu2x/issues/238)
def __init__(self, seg_size=48, scale_factor=2, boarder_pad_size=3):
self.seg_size = seg_size
self.scale_factor = scale_factor
self.pad_size = boarder_pad_size
self.height = 0
self.width = 0
self.upsampler = nn.Upsample(scale_factor=scale_factor, mode='bilinear')
def split_img_tensor(self, pil_img, scale_method=Image.BILINEAR, img_pad=0):
# resize image and convert them into tensor
img_tensor = to_tensor(pil_img).unsqueeze(0)
img_tensor = nn.ReplicationPad2d(self.pad_size)(img_tensor)
batch, channel, height, width = img_tensor.size()
self.height = height
self.width = width
if scale_method is not None:
img_up = pil_img.resize((2 * pil_img.size[0], 2 * pil_img.size[1]), scale_method)
img_up = to_tensor(img_up).unsqueeze(0)
img_up = nn.ReplicationPad2d(self.pad_size * self.scale_factor)(img_up)
patch_box = []
# avoid the residual part is smaller than the padded size
if height % self.seg_size < self.pad_size or width % self.seg_size < self.pad_size:
self.seg_size += self.scale_factor * self.pad_size
# split image into over-lapping pieces
for i in range(self.pad_size, height, self.seg_size):
for j in range(self.pad_size, width, self.seg_size):
part = img_tensor[:, :,
(i - self.pad_size):min(i + self.pad_size + self.seg_size, height),
(j - self.pad_size):min(j + self.pad_size + self.seg_size, width)]
if img_pad > 0:
part = nn.ZeroPad2d(img_pad)(part)
if scale_method is not None:
# part_up = self.upsampler(part)
part_up = img_up[:, :,
self.scale_factor * (i - self.pad_size):min(i + self.pad_size + self.seg_size,
height) * self.scale_factor,
self.scale_factor * (j - self.pad_size):min(j + self.pad_size + self.seg_size,
width) * self.scale_factor]
patch_box.append((part, part_up))
else:
patch_box.append(part)
return patch_box
def merge_img_tensor(self, list_img_tensor):
out = torch.zeros((1, 3, self.height * self.scale_factor, self.width * self.scale_factor))
img_tensors = copy.copy(list_img_tensor)
rem = self.pad_size * 2
pad_size = self.scale_factor * self.pad_size
seg_size = self.scale_factor * self.seg_size
height = self.scale_factor * self.height
width = self.scale_factor * self.width
for i in range(pad_size, height, seg_size):
for j in range(pad_size, width, seg_size):
part = img_tensors.pop(0)
part = part[:, :, rem:-rem, rem:-rem]
# might have error
if len(part.size()) > 3:
_, _, p_h, p_w = part.size()
out[:, :, i:i + p_h, j:j + p_w] = part
# out[:,:,
# self.scale_factor*i:self.scale_factor*i+p_h,
# self.scale_factor*j:self.scale_factor*j+p_w] = part
out = out[:, :, rem:-rem, rem:-rem]
return out
def load_single_image(img_file,
up_scale=False,
up_scale_factor=2,
up_scale_method=Image.BILINEAR,
zero_padding=False):
img = Image.open(img_file).convert("RGB")
out = to_tensor(img).unsqueeze(0)
if zero_padding:
out = nn.ZeroPad2d(zero_padding)(out)
if up_scale:
size = tuple(map(lambda x: x * up_scale_factor, img.size))
img_up = img.resize(size, up_scale_method)
img_up = to_tensor(img_up).unsqueeze(0)
out = (out, img_up)
return out
def standardize_img_format(img_folder):
def process(img_file):
img_path = os.path.dirname(img_file)
img_name, _ = os.path.basename(img_file).split(".")
out = os.path.join(img_path, img_name + ".JPEG")
os.rename(img_file, out)
list_imgs = []
for i in ['png', "jpeg", 'jpg']:
list_imgs.extend(glob.glob(img_folder + "**/*." + i, recursive=True))
print("Found {} images.".format(len(list_imgs)))
pool = ThreadPool(4)
pool.map(process, list_imgs)
pool.close()
pool.join()