Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. | |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import importlib | |
import inspect | |
import os | |
from dataclasses import dataclass | |
from pathlib import Path | |
from typing import Any, Dict, List, Optional, Union | |
import numpy as np | |
import torch | |
import diffusers | |
import PIL | |
from huggingface_hub import model_info, snapshot_download | |
from packaging import version | |
from PIL import Image | |
from tqdm.auto import tqdm | |
from .configuration_utils import ConfigMixin | |
from .dynamic_modules_utils import get_class_from_dynamic_module | |
from .hub_utils import http_user_agent | |
from .modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT | |
from .schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME | |
from .utils import ( | |
CONFIG_NAME, | |
DIFFUSERS_CACHE, | |
ONNX_WEIGHTS_NAME, | |
WEIGHTS_NAME, | |
BaseOutput, | |
deprecate, | |
is_accelerate_available, | |
is_safetensors_available, | |
is_torch_version, | |
is_transformers_available, | |
logging, | |
) | |
if is_transformers_available(): | |
import transformers | |
from transformers import PreTrainedModel | |
INDEX_FILE = "diffusion_pytorch_model.bin" | |
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py" | |
DUMMY_MODULES_FOLDER = "diffusers.utils" | |
TRANSFORMERS_DUMMY_MODULES_FOLDER = "transformers.utils" | |
logger = logging.get_logger(__name__) | |
LOADABLE_CLASSES = { | |
"diffusers": { | |
"ModelMixin": ["save_pretrained", "from_pretrained"], | |
"SchedulerMixin": ["save_pretrained", "from_pretrained"], | |
"DiffusionPipeline": ["save_pretrained", "from_pretrained"], | |
"OnnxRuntimeModel": ["save_pretrained", "from_pretrained"], | |
}, | |
"transformers": { | |
"PreTrainedTokenizer": ["save_pretrained", "from_pretrained"], | |
"PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"], | |
"PreTrainedModel": ["save_pretrained", "from_pretrained"], | |
"FeatureExtractionMixin": ["save_pretrained", "from_pretrained"], | |
"ProcessorMixin": ["save_pretrained", "from_pretrained"], | |
"ImageProcessingMixin": ["save_pretrained", "from_pretrained"], | |
}, | |
"onnxruntime.training": { | |
"ORTModule": ["save_pretrained", "from_pretrained"], | |
}, | |
} | |
ALL_IMPORTABLE_CLASSES = {} | |
for library in LOADABLE_CLASSES: | |
ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library]) | |
class ImagePipelineOutput(BaseOutput): | |
""" | |
Output class for image pipelines. | |
Args: | |
images (`List[PIL.Image.Image]` or `np.ndarray`) | |
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, | |
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. | |
""" | |
images: Union[List[PIL.Image.Image], np.ndarray] | |
class AudioPipelineOutput(BaseOutput): | |
""" | |
Output class for audio pipelines. | |
Args: | |
audios (`np.ndarray`) | |
List of denoised samples of shape `(batch_size, num_channels, sample_rate)`. Numpy array present the | |
denoised audio samples of the diffusion pipeline. | |
""" | |
audios: np.ndarray | |
def is_safetensors_compatible(info) -> bool: | |
filenames = set(sibling.rfilename for sibling in info.siblings) | |
pt_filenames = set(filename for filename in filenames if filename.endswith(".bin")) | |
is_safetensors_compatible = any(file.endswith(".safetensors") for file in filenames) | |
for pt_filename in pt_filenames: | |
prefix, raw = os.path.split(pt_filename) | |
if raw == "pytorch_model.bin": | |
# transformers specific | |
sf_filename = os.path.join(prefix, "model.safetensors") | |
else: | |
sf_filename = pt_filename[: -len(".bin")] + ".safetensors" | |
if is_safetensors_compatible and sf_filename not in filenames: | |
logger.warning(f"{sf_filename} not found") | |
is_safetensors_compatible = False | |
return is_safetensors_compatible | |
class DiffusionPipeline(ConfigMixin): | |
r""" | |
Base class for all models. | |
[`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines | |
and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to: | |
- move all PyTorch modules to the device of your choice | |
- enabling/disabling the progress bar for the denoising iteration | |
Class attributes: | |
- **config_name** (`str`) -- name of the config file that will store the class and module names of all | |
components of the diffusion pipeline. | |
- **_optional_components** (List[`str`]) -- list of all components that are optional so they don't have to be | |
passed for the pipeline to function (should be overridden by subclasses). | |
""" | |
config_name = "model_index.json" | |
_optional_components = [] | |
def register_modules(self, **kwargs): | |
# import it here to avoid circular import | |
from diffusers import pipelines | |
for name, module in kwargs.items(): | |
# retrieve library | |
if module is None: | |
register_dict = {name: (None, None)} | |
else: | |
library = module.__module__.split(".")[0] | |
# check if the module is a pipeline module | |
pipeline_dir = module.__module__.split(".")[-2] if len(module.__module__.split(".")) > 2 else None | |
path = module.__module__.split(".") | |
is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir) | |
# if library is not in LOADABLE_CLASSES, then it is a custom module. | |
# Or if it's a pipeline module, then the module is inside the pipeline | |
# folder so we set the library to module name. | |
if library not in LOADABLE_CLASSES or is_pipeline_module: | |
library = pipeline_dir | |
# retrieve class_name | |
class_name = module.__class__.__name__ | |
register_dict = {name: (library, class_name)} | |
# save model index config | |
self.register_to_config(**register_dict) | |
# set models | |
setattr(self, name, module) | |
def save_pretrained( | |
self, | |
save_directory: Union[str, os.PathLike], | |
safe_serialization: bool = False, | |
): | |
""" | |
Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to | |
a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading | |
method. The pipeline can easily be re-loaded using the `[`~DiffusionPipeline.from_pretrained`]` class method. | |
Arguments: | |
save_directory (`str` or `os.PathLike`): | |
Directory to which to save. Will be created if it doesn't exist. | |
safe_serialization (`bool`, *optional*, defaults to `False`): | |
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). | |
""" | |
self.save_config(save_directory) | |
model_index_dict = dict(self.config) | |
model_index_dict.pop("_class_name") | |
model_index_dict.pop("_diffusers_version") | |
model_index_dict.pop("_module", None) | |
expected_modules, optional_kwargs = self._get_signature_keys(self) | |
def is_saveable_module(name, value): | |
if name not in expected_modules: | |
return False | |
if name in self._optional_components and value[0] is None: | |
return False | |
return True | |
model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)} | |
for pipeline_component_name in model_index_dict.keys(): | |
sub_model = getattr(self, pipeline_component_name) | |
model_cls = sub_model.__class__ | |
save_method_name = None | |
# search for the model's base class in LOADABLE_CLASSES | |
for library_name, library_classes in LOADABLE_CLASSES.items(): | |
library = importlib.import_module(library_name) | |
for base_class, save_load_methods in library_classes.items(): | |
class_candidate = getattr(library, base_class, None) | |
if class_candidate is not None and issubclass(model_cls, class_candidate): | |
# if we found a suitable base class in LOADABLE_CLASSES then grab its save method | |
save_method_name = save_load_methods[0] | |
break | |
if save_method_name is not None: | |
break | |
save_method = getattr(sub_model, save_method_name) | |
# Call the save method with the argument safe_serialization only if it's supported | |
save_method_signature = inspect.signature(save_method) | |
save_method_accept_safe = "safe_serialization" in save_method_signature.parameters | |
if save_method_accept_safe: | |
save_method( | |
os.path.join(save_directory, pipeline_component_name), safe_serialization=safe_serialization | |
) | |
else: | |
save_method(os.path.join(save_directory, pipeline_component_name)) | |
def to(self, torch_device: Optional[Union[str, torch.device]] = None): | |
if torch_device is None: | |
return self | |
module_names, _, _ = self.extract_init_dict(dict(self.config)) | |
for name in module_names.keys(): | |
module = getattr(self, name) | |
if isinstance(module, torch.nn.Module): | |
if module.dtype == torch.float16 and str(torch_device) in ["cpu"]: | |
logger.warning( | |
"Pipelines loaded with `torch_dtype=torch.float16` cannot run with `cpu` device. It" | |
" is not recommended to move them to `cpu` as running them will fail. Please make" | |
" sure to use an accelerator to run the pipeline in inference, due to the lack of" | |
" support for`float16` operations on this device in PyTorch. Please, remove the" | |
" `torch_dtype=torch.float16` argument, or use another device for inference." | |
) | |
module.to(torch_device) | |
return self | |
def device(self) -> torch.device: | |
r""" | |
Returns: | |
`torch.device`: The torch device on which the pipeline is located. | |
""" | |
module_names, _, _ = self.extract_init_dict(dict(self.config)) | |
for name in module_names.keys(): | |
module = getattr(self, name) | |
if isinstance(module, torch.nn.Module): | |
return module.device | |
return torch.device("cpu") | |
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): | |
r""" | |
Instantiate a PyTorch diffusion pipeline from pre-trained pipeline weights. | |
The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). | |
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come | |
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning | |
task. | |
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those | |
weights are discarded. | |
Parameters: | |
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): | |
Can be either: | |
- A string, the *repo id* of a pretrained pipeline hosted inside a model repo on | |
https://huggingface.co/ Valid repo ids have to be located under a user or organization name, like | |
`CompVis/ldm-text2im-large-256`. | |
- A path to a *directory* containing pipeline weights saved using | |
[`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`. | |
torch_dtype (`str` or `torch.dtype`, *optional*): | |
Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype | |
will be automatically derived from the model's weights. | |
custom_pipeline (`str`, *optional*): | |
<Tip warning={true}> | |
This is an experimental feature and is likely to change in the future. | |
</Tip> | |
Can be either: | |
- A string, the *repo id* of a custom pipeline hosted inside a model repo on | |
https://huggingface.co/. Valid repo ids have to be located under a user or organization name, | |
like `hf-internal-testing/diffusers-dummy-pipeline`. | |
<Tip> | |
It is required that the model repo has a file, called `pipeline.py` that defines the custom | |
pipeline. | |
</Tip> | |
- A string, the *file name* of a community pipeline hosted on GitHub under | |
https://github.com/huggingface/diffusers/tree/main/examples/community. Valid file names have to | |
match exactly the file name without `.py` located under the above link, *e.g.* | |
`clip_guided_stable_diffusion`. | |
<Tip> | |
Community pipelines are always loaded from the current `main` branch of GitHub. | |
</Tip> | |
- A path to a *directory* containing a custom pipeline, e.g., `./my_pipeline_directory/`. | |
<Tip> | |
It is required that the directory has a file, called `pipeline.py` that defines the custom | |
pipeline. | |
</Tip> | |
For more information on how to load and create custom pipelines, please have a look at [Loading and | |
Adding Custom | |
Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview) | |
torch_dtype (`str` or `torch.dtype`, *optional*): | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to delete incompletely received files. Will attempt to resume the download if such a | |
file exists. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
output_loading_info(`bool`, *optional*, defaults to `False`): | |
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
local_files_only(`bool`, *optional*, defaults to `False`): | |
Whether or not to only look at local files (i.e., do not try to download the model). | |
use_auth_token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
when running `huggingface-cli login` (stored in `~/.huggingface`). | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
identifier allowed by git. | |
mirror (`str`, *optional*): | |
Mirror source to accelerate downloads in China. If you are from China and have an accessibility | |
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. | |
Please refer to the mirror site for more information. specify the folder name here. | |
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): | |
A map that specifies where each submodule should go. It doesn't need to be refined to each | |
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the | |
same device. | |
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For | |
more information about each option see [designing a device | |
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). | |
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): | |
Speed up model loading by not initializing the weights and only loading the pre-trained weights. This | |
also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the | |
model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch, | |
setting this argument to `True` will raise an error. | |
return_cached_folder (`bool`, *optional*, defaults to `False`): | |
If set to `True`, path to downloaded cached folder will be returned in addition to loaded pipeline. | |
kwargs (remaining dictionary of keyword arguments, *optional*): | |
Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the | |
specific pipeline class. The overwritten components are then directly passed to the pipelines | |
`__init__` method. See example below for more information. | |
<Tip> | |
It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated | |
models](https://huggingface.co/docs/hub/models-gated#gated-models), *e.g.* `"runwayml/stable-diffusion-v1-5"` | |
</Tip> | |
<Tip> | |
Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use | |
this method in a firewalled environment. | |
</Tip> | |
Examples: | |
```py | |
>>> from diffusers import DiffusionPipeline | |
>>> # Download pipeline from huggingface.co and cache. | |
>>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256") | |
>>> # Download pipeline that requires an authorization token | |
>>> # For more information on access tokens, please refer to this section | |
>>> # of the documentation](https://huggingface.co/docs/hub/security-tokens) | |
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") | |
>>> # Use a different scheduler | |
>>> from diffusers import LMSDiscreteScheduler | |
>>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config) | |
>>> pipeline.scheduler = scheduler | |
``` | |
""" | |
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | |
resume_download = kwargs.pop("resume_download", False) | |
force_download = kwargs.pop("force_download", False) | |
proxies = kwargs.pop("proxies", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
revision = kwargs.pop("revision", None) | |
torch_dtype = kwargs.pop("torch_dtype", None) | |
custom_pipeline = kwargs.pop("custom_pipeline", None) | |
provider = kwargs.pop("provider", None) | |
sess_options = kwargs.pop("sess_options", None) | |
device_map = kwargs.pop("device_map", None) | |
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) | |
return_cached_folder = kwargs.pop("return_cached_folder", False) | |
# 1. Download the checkpoints and configs | |
# use snapshot download here to get it working from from_pretrained | |
if not os.path.isdir(pretrained_model_name_or_path): | |
config_dict = cls.load_config( | |
pretrained_model_name_or_path, | |
cache_dir=cache_dir, | |
resume_download=resume_download, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
) | |
# make sure we only download sub-folders and `diffusers` filenames | |
folder_names = [k for k in config_dict.keys() if not k.startswith("_")] | |
allow_patterns = [os.path.join(k, "*") for k in folder_names] | |
allow_patterns += [WEIGHTS_NAME, SCHEDULER_CONFIG_NAME, CONFIG_NAME, ONNX_WEIGHTS_NAME, cls.config_name] | |
# make sure we don't download flax weights | |
ignore_patterns = ["*.msgpack"] | |
if custom_pipeline is not None: | |
allow_patterns += [CUSTOM_PIPELINE_FILE_NAME] | |
if cls != DiffusionPipeline: | |
requested_pipeline_class = cls.__name__ | |
else: | |
requested_pipeline_class = config_dict.get("_class_name", cls.__name__) | |
user_agent = {"pipeline_class": requested_pipeline_class} | |
if custom_pipeline is not None: | |
user_agent["custom_pipeline"] = custom_pipeline | |
user_agent = http_user_agent(user_agent) | |
if is_safetensors_available(): | |
info = model_info( | |
pretrained_model_name_or_path, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
) | |
if is_safetensors_compatible(info): | |
ignore_patterns.append("*.bin") | |
# download all allow_patterns | |
cached_folder = snapshot_download( | |
pretrained_model_name_or_path, | |
cache_dir=cache_dir, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
allow_patterns=allow_patterns, | |
ignore_patterns=ignore_patterns, | |
user_agent=user_agent, | |
) | |
else: | |
cached_folder = pretrained_model_name_or_path | |
config_dict = cls.load_config(cached_folder) | |
# 2. Load the pipeline class, if using custom module then load it from the hub | |
# if we load from explicit class, let's use it | |
if custom_pipeline is not None: | |
if custom_pipeline.endswith(".py"): | |
path = Path(custom_pipeline) | |
# decompose into folder & file | |
file_name = path.name | |
custom_pipeline = path.parent.absolute() | |
else: | |
file_name = CUSTOM_PIPELINE_FILE_NAME | |
pipeline_class = get_class_from_dynamic_module( | |
custom_pipeline, module_file=file_name, cache_dir=custom_pipeline | |
) | |
elif cls != DiffusionPipeline: | |
pipeline_class = cls | |
else: | |
diffusers_module = importlib.import_module(cls.__module__.split(".")[0]) | |
pipeline_class = getattr(diffusers_module, config_dict["_class_name"]) | |
# To be removed in 1.0.0 | |
if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse( | |
version.parse(config_dict["_diffusers_version"]).base_version | |
) <= version.parse("0.5.1"): | |
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy | |
pipeline_class = StableDiffusionInpaintPipelineLegacy | |
deprecation_message = ( | |
"You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the" | |
f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For" | |
" better inpainting results, we strongly suggest using Stable Diffusion's official inpainting" | |
" checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your" | |
f" checkpoint {pretrained_model_name_or_path} to the format of" | |
" https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain" | |
" the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0." | |
) | |
deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False) | |
# some modules can be passed directly to the init | |
# in this case they are already instantiated in `kwargs` | |
# extract them here | |
expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class) | |
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} | |
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} | |
init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs) | |
# define init kwargs | |
init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict} | |
init_kwargs = {**init_kwargs, **passed_pipe_kwargs} | |
# remove `null` components | |
def load_module(name, value): | |
if value[0] is None: | |
return False | |
if name in passed_class_obj and passed_class_obj[name] is None: | |
return False | |
return True | |
init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)} | |
if len(unused_kwargs) > 0: | |
logger.warning( | |
f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored." | |
) | |
if low_cpu_mem_usage and not is_accelerate_available(): | |
low_cpu_mem_usage = False | |
logger.warning( | |
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" | |
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" | |
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" | |
" install accelerate\n```\n." | |
) | |
if device_map is not None and not is_torch_version(">=", "1.9.0"): | |
raise NotImplementedError( | |
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
" `device_map=None`." | |
) | |
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): | |
raise NotImplementedError( | |
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
" `low_cpu_mem_usage=False`." | |
) | |
if low_cpu_mem_usage is False and device_map is not None: | |
raise ValueError( | |
f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and" | |
" dispatching. Please make sure to set `low_cpu_mem_usage=True`." | |
) | |
# import it here to avoid circular import | |
from diffusers import pipelines | |
# 3. Load each module in the pipeline | |
for name, (library_name, class_name) in init_dict.items(): | |
# 3.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names | |
if class_name.startswith("Flax"): | |
class_name = class_name[4:] | |
is_pipeline_module = hasattr(pipelines, library_name) | |
loaded_sub_model = None | |
# if the model is in a pipeline module, then we load it from the pipeline | |
if name in passed_class_obj: | |
# 1. check that passed_class_obj has correct parent class | |
if not is_pipeline_module: | |
library = importlib.import_module(library_name) | |
class_obj = getattr(library, class_name) | |
importable_classes = LOADABLE_CLASSES[library_name] | |
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()} | |
expected_class_obj = None | |
for class_name, class_candidate in class_candidates.items(): | |
if class_candidate is not None and issubclass(class_obj, class_candidate): | |
expected_class_obj = class_candidate | |
if not issubclass(passed_class_obj[name].__class__, expected_class_obj): | |
raise ValueError( | |
f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be" | |
f" {expected_class_obj}" | |
) | |
else: | |
logger.warning( | |
f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it" | |
" has the correct type" | |
) | |
# set passed class object | |
loaded_sub_model = passed_class_obj[name] | |
elif is_pipeline_module: | |
pipeline_module = getattr(pipelines, library_name) | |
class_obj = getattr(pipeline_module, class_name) | |
importable_classes = ALL_IMPORTABLE_CLASSES | |
class_candidates = {c: class_obj for c in importable_classes.keys()} | |
else: | |
# else we just import it from the library. | |
library = importlib.import_module(library_name) | |
class_obj = getattr(library, class_name) | |
importable_classes = LOADABLE_CLASSES[library_name] | |
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()} | |
if loaded_sub_model is None: | |
load_method_name = None | |
for class_name, class_candidate in class_candidates.items(): | |
if class_candidate is not None and issubclass(class_obj, class_candidate): | |
load_method_name = importable_classes[class_name][1] | |
if load_method_name is None: | |
none_module = class_obj.__module__ | |
is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith( | |
TRANSFORMERS_DUMMY_MODULES_FOLDER | |
) | |
if is_dummy_path and "dummy" in none_module: | |
# call class_obj for nice error message of missing requirements | |
class_obj() | |
raise ValueError( | |
f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have" | |
f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}." | |
) | |
load_method = getattr(class_obj, load_method_name) | |
loading_kwargs = {} | |
if issubclass(class_obj, torch.nn.Module): | |
loading_kwargs["torch_dtype"] = torch_dtype | |
if issubclass(class_obj, diffusers.OnnxRuntimeModel): | |
loading_kwargs["provider"] = provider | |
loading_kwargs["sess_options"] = sess_options | |
is_diffusers_model = issubclass(class_obj, diffusers.ModelMixin) | |
is_transformers_model = ( | |
is_transformers_available() | |
and issubclass(class_obj, PreTrainedModel) | |
and version.parse(version.parse(transformers.__version__).base_version) >= version.parse("4.20.0") | |
) | |
# When loading a transformers model, if the device_map is None, the weights will be initialized as opposed to diffusers. | |
# To make default loading faster we set the `low_cpu_mem_usage=low_cpu_mem_usage` flag which is `True` by default. | |
# This makes sure that the weights won't be initialized which significantly speeds up loading. | |
if is_diffusers_model or is_transformers_model: | |
loading_kwargs["device_map"] = device_map | |
loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage | |
# check if the module is in a subdirectory | |
if os.path.isdir(os.path.join(cached_folder, name)): | |
loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs) | |
else: | |
# else load from the root directory | |
loaded_sub_model = load_method(cached_folder, **loading_kwargs) | |
init_kwargs[name] = loaded_sub_model # UNet(...), # DiffusionSchedule(...) | |
# 4. Potentially add passed objects if expected | |
missing_modules = set(expected_modules) - set(init_kwargs.keys()) | |
passed_modules = list(passed_class_obj.keys()) | |
optional_modules = pipeline_class._optional_components | |
if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules): | |
for module in missing_modules: | |
init_kwargs[module] = passed_class_obj.get(module, None) | |
elif len(missing_modules) > 0: | |
passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs | |
raise ValueError( | |
f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed." | |
) | |
# 5. Instantiate the pipeline | |
model = pipeline_class(**init_kwargs) | |
if return_cached_folder: | |
return model, cached_folder | |
return model | |
def _get_signature_keys(obj): | |
parameters = inspect.signature(obj.__init__).parameters | |
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty} | |
optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty}) | |
expected_modules = set(required_parameters.keys()) - set(["self"]) | |
return expected_modules, optional_parameters | |
def components(self) -> Dict[str, Any]: | |
r""" | |
The `self.components` property can be useful to run different pipelines with the same weights and | |
configurations to not have to re-allocate memory. | |
Examples: | |
```py | |
>>> from diffusers import ( | |
... StableDiffusionPipeline, | |
... StableDiffusionImg2ImgPipeline, | |
... StableDiffusionInpaintPipeline, | |
... ) | |
>>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") | |
>>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components) | |
>>> inpaint = StableDiffusionInpaintPipeline(**text2img.components) | |
``` | |
Returns: | |
A dictionaly containing all the modules needed to initialize the pipeline. | |
""" | |
expected_modules, optional_parameters = self._get_signature_keys(self) | |
components = { | |
k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters | |
} | |
if set(components.keys()) != expected_modules: | |
raise ValueError( | |
f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected" | |
f" {expected_modules} to be defined, but {components} are defined." | |
) | |
return components | |
def numpy_to_pil(images): | |
""" | |
Convert a numpy image or a batch of images to a PIL image. | |
""" | |
if images.ndim == 3: | |
images = images[None, ...] | |
images = (images * 255).round().astype("uint8") | |
if images.shape[-1] == 1: | |
# special case for grayscale (single channel) images | |
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] | |
else: | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def progress_bar(self, iterable=None, total=None): | |
if not hasattr(self, "_progress_bar_config"): | |
self._progress_bar_config = {} | |
elif not isinstance(self._progress_bar_config, dict): | |
raise ValueError( | |
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}." | |
) | |
if iterable is not None: | |
return tqdm(iterable, **self._progress_bar_config) | |
elif total is not None: | |
return tqdm(total=total, **self._progress_bar_config) | |
else: | |
raise ValueError("Either `total` or `iterable` has to be defined.") | |
def set_progress_bar_config(self, **kwargs): | |
self._progress_bar_config = kwargs | |
def enable_xformers_memory_efficient_attention(self): | |
r""" | |
Enable memory efficient attention as implemented in xformers. | |
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference | |
time. Speed up at training time is not guaranteed. | |
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention | |
is used. | |
""" | |
self.set_use_memory_efficient_attention_xformers(True) | |
def disable_xformers_memory_efficient_attention(self): | |
r""" | |
Disable memory efficient attention as implemented in xformers. | |
""" | |
self.set_use_memory_efficient_attention_xformers(False) | |
def set_use_memory_efficient_attention_xformers(self, valid: bool) -> None: | |
# Recursively walk through all the children. | |
# Any children which exposes the set_use_memory_efficient_attention_xformers method | |
# gets the message | |
def fn_recursive_set_mem_eff(module: torch.nn.Module): | |
if hasattr(module, "set_use_memory_efficient_attention_xformers"): | |
module.set_use_memory_efficient_attention_xformers(valid) | |
for child in module.children(): | |
fn_recursive_set_mem_eff(child) | |
module_names, _, _ = self.extract_init_dict(dict(self.config)) | |
for module_name in module_names: | |
module = getattr(self, module_name) | |
if isinstance(module, torch.nn.Module): | |
fn_recursive_set_mem_eff(module) | |