Spaces:
Runtime error
Runtime error
# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput, logging | |
from .scheduling_utils import SchedulerMixin | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerDiscrete | |
class EulerDiscreteSchedulerOutput(BaseOutput): | |
""" | |
Output class for the scheduler's step function output. | |
Args: | |
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the | |
denoising loop. | |
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
The predicted denoised sample (x_{0}) based on the model output from the current timestep. | |
`pred_original_sample` can be used to preview progress or for guidance. | |
""" | |
prev_sample: torch.FloatTensor | |
pred_original_sample: Optional[torch.FloatTensor] = None | |
class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin): | |
""" | |
Euler scheduler (Algorithm 2) from Karras et al. (2022) https://arxiv.org/abs/2206.00364. . Based on the original | |
k-diffusion implementation by Katherine Crowson: | |
https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L51 | |
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | |
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | |
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and | |
[`~SchedulerMixin.from_pretrained`] functions. | |
Args: | |
num_train_timesteps (`int`): number of diffusion steps used to train the model. | |
beta_start (`float`): the starting `beta` value of inference. | |
beta_end (`float`): the final `beta` value. | |
beta_schedule (`str`): | |
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | |
`linear` or `scaled_linear`. | |
trained_betas (`np.ndarray`, optional): | |
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. | |
prediction_type (`str`, default `epsilon`, optional): | |
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion | |
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 | |
https://imagen.research.google/video/paper.pdf) | |
""" | |
_compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy() | |
order = 1 | |
def __init__( | |
self, | |
num_train_timesteps: int = 1000, | |
beta_start: float = 0.0001, | |
beta_end: float = 0.02, | |
beta_schedule: str = "linear", | |
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, | |
prediction_type: str = "epsilon", | |
): | |
if trained_betas is not None: | |
self.betas = torch.tensor(trained_betas, dtype=torch.float32) | |
elif beta_schedule == "linear": | |
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | |
elif beta_schedule == "scaled_linear": | |
# this schedule is very specific to the latent diffusion model. | |
self.betas = ( | |
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | |
) | |
else: | |
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | |
self.alphas = 1.0 - self.betas | |
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | |
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | |
sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) | |
self.sigmas = torch.from_numpy(sigmas) | |
# standard deviation of the initial noise distribution | |
self.init_noise_sigma = self.sigmas.max() | |
# setable values | |
self.num_inference_steps = None | |
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy() | |
self.timesteps = torch.from_numpy(timesteps) | |
self.is_scale_input_called = False | |
def scale_model_input( | |
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor] | |
) -> torch.FloatTensor: | |
""" | |
Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. | |
Args: | |
sample (`torch.FloatTensor`): input sample | |
timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain | |
Returns: | |
`torch.FloatTensor`: scaled input sample | |
""" | |
if isinstance(timestep, torch.Tensor): | |
timestep = timestep.to(self.timesteps.device) | |
step_index = (self.timesteps == timestep).nonzero().item() | |
sigma = self.sigmas[step_index] | |
sample = sample / ((sigma**2 + 1) ** 0.5) | |
self.is_scale_input_called = True | |
return sample | |
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | |
""" | |
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. | |
Args: | |
num_inference_steps (`int`): | |
the number of diffusion steps used when generating samples with a pre-trained model. | |
device (`str` or `torch.device`, optional): | |
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
""" | |
self.num_inference_steps = num_inference_steps | |
timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy() | |
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | |
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) | |
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) | |
self.sigmas = torch.from_numpy(sigmas).to(device=device) | |
if str(device).startswith("mps"): | |
# mps does not support float64 | |
self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32) | |
else: | |
self.timesteps = torch.from_numpy(timesteps).to(device=device) | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: Union[float, torch.FloatTensor], | |
sample: torch.FloatTensor, | |
s_churn: float = 0.0, | |
s_tmin: float = 0.0, | |
s_tmax: float = float("inf"), | |
s_noise: float = 1.0, | |
generator: Optional[torch.Generator] = None, | |
return_dict: bool = True, | |
) -> Union[EulerDiscreteSchedulerOutput, Tuple]: | |
""" | |
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
Args: | |
model_output (`torch.FloatTensor`): direct output from learned diffusion model. | |
timestep (`float`): current timestep in the diffusion chain. | |
sample (`torch.FloatTensor`): | |
current instance of sample being created by diffusion process. | |
s_churn (`float`) | |
s_tmin (`float`) | |
s_tmax (`float`) | |
s_noise (`float`) | |
generator (`torch.Generator`, optional): Random number generator. | |
return_dict (`bool`): option for returning tuple rather than EulerDiscreteSchedulerOutput class | |
Returns: | |
[`~schedulers.scheduling_utils.EulerDiscreteSchedulerOutput`] or `tuple`: | |
[`~schedulers.scheduling_utils.EulerDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a | |
`tuple`. When returning a tuple, the first element is the sample tensor. | |
""" | |
if ( | |
isinstance(timestep, int) | |
or isinstance(timestep, torch.IntTensor) | |
or isinstance(timestep, torch.LongTensor) | |
): | |
raise ValueError( | |
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" | |
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" | |
" one of the `scheduler.timesteps` as a timestep.", | |
) | |
if not self.is_scale_input_called: | |
logger.warning( | |
"The `scale_model_input` function should be called before `step` to ensure correct denoising. " | |
"See `StableDiffusionPipeline` for a usage example." | |
) | |
if isinstance(timestep, torch.Tensor): | |
timestep = timestep.to(self.timesteps.device) | |
step_index = (self.timesteps == timestep).nonzero().item() | |
sigma = self.sigmas[step_index] | |
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 | |
device = model_output.device | |
if device.type == "mps": | |
# randn does not work reproducibly on mps | |
noise = torch.randn(model_output.shape, dtype=model_output.dtype, device="cpu", generator=generator).to( | |
device | |
) | |
else: | |
noise = torch.randn(model_output.shape, dtype=model_output.dtype, device=device, generator=generator).to( | |
device | |
) | |
eps = noise * s_noise | |
sigma_hat = sigma * (gamma + 1) | |
if gamma > 0: | |
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 | |
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | |
if self.config.prediction_type == "epsilon": | |
pred_original_sample = sample - sigma_hat * model_output | |
elif self.config.prediction_type == "v_prediction": | |
# * c_out + input * c_skip | |
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) | |
else: | |
raise ValueError( | |
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" | |
) | |
# 2. Convert to an ODE derivative | |
derivative = (sample - pred_original_sample) / sigma_hat | |
dt = self.sigmas[step_index + 1] - sigma_hat | |
prev_sample = sample + derivative * dt | |
if not return_dict: | |
return (prev_sample,) | |
return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) | |
def add_noise( | |
self, | |
original_samples: torch.FloatTensor, | |
noise: torch.FloatTensor, | |
timesteps: torch.FloatTensor, | |
) -> torch.FloatTensor: | |
# Make sure sigmas and timesteps have the same device and dtype as original_samples | |
self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) | |
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): | |
# mps does not support float64 | |
self.timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) | |
timesteps = timesteps.to(original_samples.device, dtype=torch.float32) | |
else: | |
self.timesteps = self.timesteps.to(original_samples.device) | |
timesteps = timesteps.to(original_samples.device) | |
schedule_timesteps = self.timesteps | |
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] | |
sigma = self.sigmas[step_indices].flatten() | |
while len(sigma.shape) < len(original_samples.shape): | |
sigma = sigma.unsqueeze(-1) | |
noisy_samples = original_samples + noise * sigma | |
return noisy_samples | |
def __len__(self): | |
return self.config.num_train_timesteps | |