Spaces:
Runtime error
Runtime error
# Copyright 2022 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS | |
from .scheduling_utils import SchedulerMixin, SchedulerOutput | |
class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin): | |
""" | |
Scheduler created by @crowsonkb in [k_diffusion](https://github.com/crowsonkb/k-diffusion), see: | |
https://github.com/crowsonkb/k-diffusion/blob/5b3af030dd83e0297272d861c19477735d0317ec/k_diffusion/sampling.py#L188 | |
Scheduler inspired by DPM-Solver-2 and Algorthim 2 from Karras et al. (2022). | |
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | |
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | |
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and | |
[`~SchedulerMixin.from_pretrained`] functions. | |
Args: | |
num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the | |
starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): | |
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | |
`linear` or `scaled_linear`. | |
trained_betas (`np.ndarray`, optional): | |
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. | |
options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`, | |
`fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`. | |
prediction_type (`str`, default `epsilon`, optional): | |
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion | |
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 | |
https://imagen.research.google/video/paper.pdf) | |
""" | |
_compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy() | |
order = 2 | |
def __init__( | |
self, | |
num_train_timesteps: int = 1000, | |
beta_start: float = 0.00085, # sensible defaults | |
beta_end: float = 0.012, | |
beta_schedule: str = "linear", | |
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, | |
prediction_type: str = "epsilon", | |
): | |
if trained_betas is not None: | |
self.betas = torch.tensor(trained_betas, dtype=torch.float32) | |
elif beta_schedule == "linear": | |
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | |
elif beta_schedule == "scaled_linear": | |
# this schedule is very specific to the latent diffusion model. | |
self.betas = ( | |
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | |
) | |
else: | |
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | |
self.alphas = 1.0 - self.betas | |
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | |
# set all values | |
self.set_timesteps(num_train_timesteps, None, num_train_timesteps) | |
def index_for_timestep(self, timestep): | |
indices = (self.timesteps == timestep).nonzero() | |
if self.state_in_first_order: | |
pos = -1 | |
else: | |
pos = 0 | |
return indices[pos].item() | |
def scale_model_input( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[float, torch.FloatTensor], | |
) -> torch.FloatTensor: | |
""" | |
Args: | |
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
current timestep. | |
sample (`torch.FloatTensor`): input sample timestep (`int`, optional): current timestep | |
Returns: | |
`torch.FloatTensor`: scaled input sample | |
""" | |
step_index = self.index_for_timestep(timestep) | |
if self.state_in_first_order: | |
sigma = self.sigmas[step_index] | |
else: | |
sigma = self.sigmas_interpol[step_index] | |
sample = sample / ((sigma**2 + 1) ** 0.5) | |
return sample | |
def set_timesteps( | |
self, | |
num_inference_steps: int, | |
device: Union[str, torch.device] = None, | |
num_train_timesteps: Optional[int] = None, | |
): | |
""" | |
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. | |
Args: | |
num_inference_steps (`int`): | |
the number of diffusion steps used when generating samples with a pre-trained model. | |
device (`str` or `torch.device`, optional): | |
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
""" | |
self.num_inference_steps = num_inference_steps | |
num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps | |
timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy() | |
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | |
self.log_sigmas = torch.from_numpy(np.log(sigmas)).to(device) | |
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) | |
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) | |
sigmas = torch.from_numpy(sigmas).to(device=device) | |
# interpolate sigmas | |
sigmas_interpol = sigmas.log().lerp(sigmas.roll(1).log(), 0.5).exp() | |
self.sigmas = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]]) | |
self.sigmas_interpol = torch.cat( | |
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]] | |
) | |
# standard deviation of the initial noise distribution | |
self.init_noise_sigma = self.sigmas.max() | |
timesteps = torch.from_numpy(timesteps).to(device) | |
# interpolate timesteps | |
timesteps_interpol = self.sigma_to_t(sigmas_interpol).to(device) | |
interleaved_timesteps = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1).flatten() | |
timesteps = torch.cat([timesteps[:1], interleaved_timesteps]) | |
if str(device).startswith("mps"): | |
# mps does not support float64 | |
self.timesteps = timesteps.to(torch.float32) | |
else: | |
self.timesteps = timesteps | |
self.sample = None | |
def sigma_to_t(self, sigma): | |
# get log sigma | |
log_sigma = sigma.log() | |
# get distribution | |
dists = log_sigma - self.log_sigmas[:, None] | |
# get sigmas range | |
low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2) | |
high_idx = low_idx + 1 | |
low = self.log_sigmas[low_idx] | |
high = self.log_sigmas[high_idx] | |
# interpolate sigmas | |
w = (low - log_sigma) / (low - high) | |
w = w.clamp(0, 1) | |
# transform interpolation to time range | |
t = (1 - w) * low_idx + w * high_idx | |
t = t.view(sigma.shape) | |
return t | |
def state_in_first_order(self): | |
return self.sample is None | |
def step( | |
self, | |
model_output: Union[torch.FloatTensor, np.ndarray], | |
timestep: Union[float, torch.FloatTensor], | |
sample: Union[torch.FloatTensor, np.ndarray], | |
return_dict: bool = True, | |
) -> Union[SchedulerOutput, Tuple]: | |
""" | |
Args: | |
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. timestep | |
(`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor` or `np.ndarray`): | |
current instance of sample being created by diffusion process. | |
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class | |
Returns: | |
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: | |
[`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
returning a tuple, the first element is the sample tensor. | |
""" | |
step_index = self.index_for_timestep(timestep) | |
if self.state_in_first_order: | |
sigma = self.sigmas[step_index] | |
sigma_interpol = self.sigmas_interpol[step_index + 1] | |
sigma_next = self.sigmas[step_index + 1] | |
else: | |
# 2nd order / KDPM2's method | |
sigma = self.sigmas[step_index - 1] | |
sigma_interpol = self.sigmas_interpol[step_index] | |
sigma_next = self.sigmas[step_index] | |
# currently only gamma=0 is supported. This usually works best anyways. | |
# We can support gamma in the future but then need to scale the timestep before | |
# passing it to the model which requires a change in API | |
gamma = 0 | |
sigma_hat = sigma * (gamma + 1) # Note: sigma_hat == sigma for now | |
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | |
if self.config.prediction_type == "epsilon": | |
sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol | |
pred_original_sample = sample - sigma_input * model_output | |
elif self.config.prediction_type == "v_prediction": | |
sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol | |
pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( | |
sample / (sigma_input**2 + 1) | |
) | |
else: | |
raise ValueError( | |
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" | |
) | |
if self.state_in_first_order: | |
# 2. Convert to an ODE derivative for 1st order | |
derivative = (sample - pred_original_sample) / sigma_hat | |
# 3. delta timestep | |
dt = sigma_interpol - sigma_hat | |
# store for 2nd order step | |
self.sample = sample | |
else: | |
# DPM-Solver-2 | |
# 2. Convert to an ODE derivative for 2nd order | |
derivative = (sample - pred_original_sample) / sigma_interpol | |
# 3. delta timestep | |
dt = sigma_next - sigma_hat | |
sample = self.sample | |
self.sample = None | |
prev_sample = sample + derivative * dt | |
if not return_dict: | |
return (prev_sample,) | |
return SchedulerOutput(prev_sample=prev_sample) | |
def add_noise( | |
self, | |
original_samples: torch.FloatTensor, | |
noise: torch.FloatTensor, | |
timesteps: torch.FloatTensor, | |
) -> torch.FloatTensor: | |
# Make sure sigmas and timesteps have the same device and dtype as original_samples | |
self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) | |
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): | |
# mps does not support float64 | |
self.timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) | |
timesteps = timesteps.to(original_samples.device, dtype=torch.float32) | |
else: | |
self.timesteps = self.timesteps.to(original_samples.device) | |
timesteps = timesteps.to(original_samples.device) | |
step_indices = [self.index_for_timestep(t) for t in timesteps] | |
sigma = self.sigmas[step_indices].flatten() | |
while len(sigma.shape) < len(original_samples.shape): | |
sigma = sigma.unsqueeze(-1) | |
noisy_samples = original_samples + noise * sigma | |
return noisy_samples | |
def __len__(self): | |
return self.config.num_train_timesteps | |