Spaces:
Runtime error
Runtime error
# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import flax | |
import jax.numpy as jnp | |
from scipy import integrate | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from .scheduling_utils_flax import ( | |
_FLAX_COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, | |
FlaxSchedulerMixin, | |
FlaxSchedulerOutput, | |
broadcast_to_shape_from_left, | |
) | |
class LMSDiscreteSchedulerState: | |
# setable values | |
num_inference_steps: Optional[int] = None | |
timesteps: Optional[jnp.ndarray] = None | |
sigmas: Optional[jnp.ndarray] = None | |
derivatives: jnp.ndarray = jnp.array([]) | |
def create(cls, num_train_timesteps: int, sigmas: jnp.ndarray): | |
return cls(timesteps=jnp.arange(0, num_train_timesteps)[::-1], sigmas=sigmas) | |
class FlaxLMSSchedulerOutput(FlaxSchedulerOutput): | |
state: LMSDiscreteSchedulerState | |
class FlaxLMSDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin): | |
""" | |
Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by | |
Katherine Crowson: | |
https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181 | |
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | |
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | |
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and | |
[`~SchedulerMixin.from_pretrained`] functions. | |
Args: | |
num_train_timesteps (`int`): number of diffusion steps used to train the model. | |
beta_start (`float`): the starting `beta` value of inference. | |
beta_end (`float`): the final `beta` value. | |
beta_schedule (`str`): | |
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | |
`linear` or `scaled_linear`. | |
trained_betas (`jnp.ndarray`, optional): | |
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. | |
""" | |
_compatibles = _FLAX_COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy() | |
def has_state(self): | |
return True | |
def __init__( | |
self, | |
num_train_timesteps: int = 1000, | |
beta_start: float = 0.0001, | |
beta_end: float = 0.02, | |
beta_schedule: str = "linear", | |
trained_betas: Optional[jnp.ndarray] = None, | |
): | |
if trained_betas is not None: | |
self.betas = jnp.asarray(trained_betas) | |
elif beta_schedule == "linear": | |
self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32) | |
elif beta_schedule == "scaled_linear": | |
# this schedule is very specific to the latent diffusion model. | |
self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2 | |
else: | |
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | |
self.alphas = 1.0 - self.betas | |
self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0) | |
def create_state(self): | |
self.state = LMSDiscreteSchedulerState.create( | |
num_train_timesteps=self.config.num_train_timesteps, | |
sigmas=((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5, | |
) | |
def scale_model_input(self, state: LMSDiscreteSchedulerState, sample: jnp.ndarray, timestep: int) -> jnp.ndarray: | |
""" | |
Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm. | |
Args: | |
state (`LMSDiscreteSchedulerState`): | |
the `FlaxLMSDiscreteScheduler` state data class instance. | |
sample (`jnp.ndarray`): | |
current instance of sample being created by diffusion process. | |
timestep (`int`): | |
current discrete timestep in the diffusion chain. | |
Returns: | |
`jnp.ndarray`: scaled input sample | |
""" | |
(step_index,) = jnp.where(state.timesteps == timestep, size=1) | |
sigma = state.sigmas[step_index] | |
sample = sample / ((sigma**2 + 1) ** 0.5) | |
return sample | |
def get_lms_coefficient(self, state, order, t, current_order): | |
""" | |
Compute a linear multistep coefficient. | |
Args: | |
order (TODO): | |
t (TODO): | |
current_order (TODO): | |
""" | |
def lms_derivative(tau): | |
prod = 1.0 | |
for k in range(order): | |
if current_order == k: | |
continue | |
prod *= (tau - state.sigmas[t - k]) / (state.sigmas[t - current_order] - state.sigmas[t - k]) | |
return prod | |
integrated_coeff = integrate.quad(lms_derivative, state.sigmas[t], state.sigmas[t + 1], epsrel=1e-4)[0] | |
return integrated_coeff | |
def set_timesteps( | |
self, state: LMSDiscreteSchedulerState, num_inference_steps: int, shape: Tuple = () | |
) -> LMSDiscreteSchedulerState: | |
""" | |
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. | |
Args: | |
state (`LMSDiscreteSchedulerState`): | |
the `FlaxLMSDiscreteScheduler` state data class instance. | |
num_inference_steps (`int`): | |
the number of diffusion steps used when generating samples with a pre-trained model. | |
""" | |
timesteps = jnp.linspace(self.config.num_train_timesteps - 1, 0, num_inference_steps, dtype=jnp.float32) | |
low_idx = jnp.floor(timesteps).astype(int) | |
high_idx = jnp.ceil(timesteps).astype(int) | |
frac = jnp.mod(timesteps, 1.0) | |
sigmas = jnp.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | |
sigmas = (1 - frac) * sigmas[low_idx] + frac * sigmas[high_idx] | |
sigmas = jnp.concatenate([sigmas, jnp.array([0.0])]).astype(jnp.float32) | |
return state.replace( | |
num_inference_steps=num_inference_steps, | |
timesteps=timesteps.astype(int), | |
derivatives=jnp.array([]), | |
sigmas=sigmas, | |
) | |
def step( | |
self, | |
state: LMSDiscreteSchedulerState, | |
model_output: jnp.ndarray, | |
timestep: int, | |
sample: jnp.ndarray, | |
order: int = 4, | |
return_dict: bool = True, | |
) -> Union[FlaxLMSSchedulerOutput, Tuple]: | |
""" | |
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
Args: | |
state (`LMSDiscreteSchedulerState`): the `FlaxLMSDiscreteScheduler` state data class instance. | |
model_output (`jnp.ndarray`): direct output from learned diffusion model. | |
timestep (`int`): current discrete timestep in the diffusion chain. | |
sample (`jnp.ndarray`): | |
current instance of sample being created by diffusion process. | |
order: coefficient for multi-step inference. | |
return_dict (`bool`): option for returning tuple rather than FlaxLMSSchedulerOutput class | |
Returns: | |
[`FlaxLMSSchedulerOutput`] or `tuple`: [`FlaxLMSSchedulerOutput`] if `return_dict` is True, otherwise a | |
`tuple`. When returning a tuple, the first element is the sample tensor. | |
""" | |
sigma = state.sigmas[timestep] | |
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | |
pred_original_sample = sample - sigma * model_output | |
# 2. Convert to an ODE derivative | |
derivative = (sample - pred_original_sample) / sigma | |
state = state.replace(derivatives=jnp.append(state.derivatives, derivative)) | |
if len(state.derivatives) > order: | |
state = state.replace(derivatives=jnp.delete(state.derivatives, 0)) | |
# 3. Compute linear multistep coefficients | |
order = min(timestep + 1, order) | |
lms_coeffs = [self.get_lms_coefficient(state, order, timestep, curr_order) for curr_order in range(order)] | |
# 4. Compute previous sample based on the derivatives path | |
prev_sample = sample + sum( | |
coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(state.derivatives)) | |
) | |
if not return_dict: | |
return (prev_sample, state) | |
return FlaxLMSSchedulerOutput(prev_sample=prev_sample, state=state) | |
def add_noise( | |
self, | |
state: LMSDiscreteSchedulerState, | |
original_samples: jnp.ndarray, | |
noise: jnp.ndarray, | |
timesteps: jnp.ndarray, | |
) -> jnp.ndarray: | |
sigma = state.sigmas[timesteps].flatten() | |
sigma = broadcast_to_shape_from_left(sigma, noise.shape) | |
noisy_samples = original_samples + noise * sigma | |
return noisy_samples | |
def __len__(self): | |
return self.config.num_train_timesteps | |