Spaces:
Runtime error
Runtime error
# This file is autogenerated by the command `make fix-copies`, do not edit. | |
# flake8: noqa | |
from ..utils import DummyObject, requires_backends | |
class AltDiffusionImg2ImgPipeline(metaclass=DummyObject): | |
_backends = ["torch", "transformers"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch", "transformers"]) | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
class AltDiffusionPipeline(metaclass=DummyObject): | |
_backends = ["torch", "transformers"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch", "transformers"]) | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
class CycleDiffusionPipeline(metaclass=DummyObject): | |
_backends = ["torch", "transformers"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch", "transformers"]) | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
class LDMTextToImagePipeline(metaclass=DummyObject): | |
_backends = ["torch", "transformers"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch", "transformers"]) | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
class StableDiffusionImageVariationPipeline(metaclass=DummyObject): | |
_backends = ["torch", "transformers"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch", "transformers"]) | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
class StableDiffusionImg2ImgPipeline(metaclass=DummyObject): | |
_backends = ["torch", "transformers"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch", "transformers"]) | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
class StableDiffusionInpaintPipeline(metaclass=DummyObject): | |
_backends = ["torch", "transformers"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch", "transformers"]) | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
class StableDiffusionInpaintPipelineLegacy(metaclass=DummyObject): | |
_backends = ["torch", "transformers"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch", "transformers"]) | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
class StableDiffusionPipeline(metaclass=DummyObject): | |
_backends = ["torch", "transformers"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch", "transformers"]) | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
class StableDiffusionPipelineSafe(metaclass=DummyObject): | |
_backends = ["torch", "transformers"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch", "transformers"]) | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
class StableDiffusionUpscalePipeline(metaclass=DummyObject): | |
_backends = ["torch", "transformers"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch", "transformers"]) | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
class VersatileDiffusionDualGuidedPipeline(metaclass=DummyObject): | |
_backends = ["torch", "transformers"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch", "transformers"]) | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
class VersatileDiffusionImageVariationPipeline(metaclass=DummyObject): | |
_backends = ["torch", "transformers"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch", "transformers"]) | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
class VersatileDiffusionPipeline(metaclass=DummyObject): | |
_backends = ["torch", "transformers"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch", "transformers"]) | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
class VersatileDiffusionTextToImagePipeline(metaclass=DummyObject): | |
_backends = ["torch", "transformers"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch", "transformers"]) | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
class VQDiffusionPipeline(metaclass=DummyObject): | |
_backends = ["torch", "transformers"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch", "transformers"]) | |
def from_config(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |
def from_pretrained(cls, *args, **kwargs): | |
requires_backends(cls, ["torch", "transformers"]) | |