--- {{ card_data }} --- # {{ model_name | default("Diffusion Model") }} ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `{{ dataset_name }}` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: {{ learning_rate }} - train_batch_size: {{ train_batch_size }} - eval_batch_size: {{ eval_batch_size }} - gradient_accumulation_steps: {{ gradient_accumulation_steps }} - optimizer: AdamW with betas=({{ adam_beta1 }}, {{ adam_beta2 }}), weight_decay={{ adam_weight_decay }} and epsilon={{ adam_epsilon }} - lr_scheduler: {{ lr_scheduler }} - lr_warmup_steps: {{ lr_warmup_steps }} - ema_inv_gamma: {{ ema_inv_gamma }} - ema_inv_gamma: {{ ema_power }} - ema_inv_gamma: {{ ema_max_decay }} - mixed_precision: {{ mixed_precision }} ### Training results 📈 [TensorBoard logs](https://huggingface.co/{{ repo_name }}/tensorboard?#scalars)