# Model Specifications ```python model_cran_v2 = CARN_V2(color_channels=3, mid_channels=64, conv=nn.Conv2d, single_conv_size=3, single_conv_group=1, scale=2, activation=nn.LeakyReLU(0.1), SEBlock=True, repeat_blocks=3, atrous=(1, 1, 1)) model_cran_v2 = network_to_half(model_cran_v2) checkpoint = "CARN_model_checkpoint.pt" model_cran_v2.load_state_dict(torch.load(checkpoint, 'cpu')) model_cran_v2 = model_cran_v2.float() # if use cpu ```` To use pre-trained model for training ```python model = CARN_V2(color_channels=3, mid_channels=64, conv=nn.Conv2d, single_conv_size=3, single_conv_group=1, scale=2, activation=nn.LeakyReLU(0.1), SEBlock=True, repeat_blocks=3, atrous=(1, 1, 1)) model = network_to_half(model) model = model.cuda() model.load_state_dict(torch.load("CARN_model_checkpoint.pt")) learning_rate = 1e-4 weight_decay = 1e-6 optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay, amsgrad=True) optimizer = FP16_Optimizer(optimizer, static_loss_scale=128.0, verbose=False) optimizer.load_state_dict(torch.load("CARN_adam_checkpoint.pt")) last_iter = torch.load("CARN_scheduler_last_iter") # -1 if start from new scheduler = CyclicLR(optimizer.optimizer, base_lr=1e-4, max_lr=4e-4, step_size=3 * total_batch, mode="triangular", last_batch_iteration=last_iter) ```