Spaces:
Sleeping
Sleeping
File size: 10,453 Bytes
84df34e 850e677 7eae98c 9c9ed59 46b45ba 7eae98c 44e3c5c 84df34e bf1f293 84df34e 9355e8a 84df34e 850e677 84df34e 9355e8a cf30049 9355e8a 84df34e 15267a1 84df34e 7eae98c 84df34e 46b45ba 84df34e 7eae98c 84df34e 7eae98c fa57097 7eae98c 84df34e 9355e8a 84df34e 9355e8a 84df34e 7eae98c 9355e8a 84df34e 18542cb 7eae98c 18542cb 7eae98c 18542cb 7eae98c 18542cb 850e677 18542cb 84df34e 9355e8a 84df34e f599bc8 cf30049 84df34e 9355e8a 84df34e 7eae98c 84df34e 7eae98c 84df34e fa57097 7eae98c 84df34e bdadc5f 7eae98c c6d4a9e 4cb60ac 84df34e 9355e8a 850e677 84df34e 9355e8a 15267a1 84df34e 7eae98c 3a78222 84df34e 085b6c2 84df34e 085b6c2 84df34e 9355e8a 32e352e ec2a28d 850e677 7eae98c 3a78222 7eae98c ec2a28d 7eae98c ec2a28d 850e677 ec2a28d 850e677 ec2a28d 7eae98c ec2a28d 9355e8a ec2a28d 84df34e ec2a28d 84df34e 9355e8a 7eae98c 6cba16e 850e677 ee72905 7eae98c ddcf702 7eae98c 850e677 84df34e 9355e8a 84df34e 122a569 09ae574 7eae98c 122a569 09ae574 84df34e 0dbf789 f16d00a 0dbf789 9c9ed59 daa6574 9c9ed59 05e56df 62cde7b 0740cc4 f20de8c d5e2616 f20de8c d5e2616 f16d00a 7eae98c d816c58 9c9ed59 62cde7b 9c9ed59 ca677a9 7eae98c 9c9ed59 0dbf789 9c9ed59 9355e8a 9c9ed59 9355e8a 9c9ed59 7d0b562 f791e50 7d0b562 56dee65 fa4cb43 1afe06d 9c9ed59 850e677 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import os
import subprocess
import random
import torch
from transformers import pipeline
import gradio as gr
from safe_search import safe_search
from i_search import google, i_search as i_s
from agent import (
ACTION_PROMPT,
ADD_PROMPT,
COMPRESS_HISTORY_PROMPT,
LOG_PROMPT,
LOG_RESPONSE,
MODIFY_PROMPT,
PREFIX,
SEARCH_QUERY,
READ_PROMPT,
TASK_PROMPT,
UNDERSTAND_TEST_RESULTS_PROMPT,
)
from utils import parse_action, parse_file_content, read_python_module_structure
from datetime import datetime
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
purpose,
**prompt_kwargs,
):
seed = random.randint(1,1111111111111111)
print(seed)
generate_kwargs = dict(
temperature=1.0,
max_new_tokens=2096,
top_p=0.99,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = PREFIX.format(
date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
purpose=purpose,
safe_search=safe_search,
) + prompt_template.format(**prompt_kwargs)
if True:
print(LOG_PROMPT.format(content))
model = pipeline('text-generation', model='microsoft/DialoGPT-small')
response = model(content, max_length=max_tokens, temperature=1.0)
resp = response[0]['generated_text']
if True:
print(LOG_RESPONSE.format(resp))
return resp
def compress_history(purpose, task, history, directory):
resp = run_gpt(
COMPRESS_HISTORY_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=512,
purpose=purpose,
task=task,
history=history,
)
return resp
def call_search(purpose, task, history, directory, action_input):
print("CALLING SEARCH")
try:
if "http" in action_input:
if "<" in action_input:
action_input = action_input.replace("<", "")
if ">" in action_input:
action_input = action_input.replace(">", "")
response = i_s(action_input)
#response = google(search_return)
print(response)
history += "observation: search result is: {}\n".format(response)
else:
history += "observation: I need to provide a valid URL to 'action: SEARCH'\n"
except Exception as e:
history += "observation: {}'\n".format(e)
return "MAIN", None, history, task
def call_main(purpose, task, history, directory, action_input):
resp = run_gpt(
ACTION_PROMPT,
stop_tokens=["observation:", "task:", "action:","thought:"],
max_tokens=2096,
purpose=purpose,
task=task,
history=history,
)
lines = resp.strip().strip("\n").split("\n")
for line in lines:
if line == "":
continue
if line.startswith("thought: "):
history += "{}\n".format(line)
elif line.startswith("action: "):
action_name, action_input = line.split(": ")
print (f'ACTION_NAME :: {action_name}')
print (f'ACTION_INPUT :: {action_input}')
history += "{}\n".format(line)
if "COMPLETE" in action_name or "COMPLETE" in action_input:
task = "COMPLETE"
return action_name, action_input, history, task
else:
return action_name, action_input, history, task
else:
history += "{}\n".format(line)
#history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line)
#return action_name, action_input, history, task
#assert False, "unknown action: {}".format(line)
return "MAIN", None, history, task
def call_set_task(purpose, task, history, directory, action_input):
task = "COMPLETE"
resp = run_gpt(
TASK_PROMPT,
stop_tokens=[],
max_tokens=64,
purpose=purpose,
task=task,
history=history,
).strip("\n")
history += "observation: task has been updated to: {}\n".format(task)
return "MAIN", None, history, task
def end_fn(purpose, task, history, directory, action_input):
task = "COMPLETE"
return "COMPLETE", "COMPLETE", history, task
NAME_TO_FUNC = {
"MAIN": call_main,
"UPDATE-TASK": call_set_task,
"SEARCH": call_search,
"COMPLETE": end_fn,
}
def run_action(purpose, task, history, directory, action_name, action_input):
print(f'action_name::{action_name}')
try:
if "RESPONSE" in action_name or "COMPLETE" in action_name:
action_name = "COMPLETE"
task = "COMPLETE"
return action_name, "COMPLETE", history, task
# compress the history when it is long
if len(history.split("\n")) > 5:
if True:
print("COMPRESSING HISTORY")
history = history
if not action_name in NAME_TO_FUNC:
action_name = "MAIN"
if action_name == "SEARCH":
action_name = "SEARCH"
assert action_name in NAME_TO_FUNC
print("RUN: ", action_name, action_input)
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
except Exception as e:
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
return "MAIN", None, history, task
def run(purpose,history):
#print(purpose)
#print(hist)
task = "COMPLETE"
directory = "directory"
if history:
history = history
if not history:
history = ""
action_name = "MAIN"
action_input = "input"
while True:
print("")
print("")
print("---")
print("purpose:", purpose)
print("task:", task)
print("---")
print(history)
print("---")
action_name, action_input, history, task = run_action(
purpose,
task,
history,
directory,
action_name,
action_input,
)
yield (history)
#yield ("",[(purpose,history)])
if task == "COMPLETE":
return (history)
#return ("", [(purpose,history)])
agents =[
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV"
]
def generate(
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
seed = random.randint(1,1111111111111111)
agent=prompts.WEB_DEV
if agent_name == "WEB_DEV":
agent = prompts.WEB_DEV
if agent_name == "AI_SYSTEM_PROMPT":
agent = prompts.AI_SYSTEM_PROMPT
if agent_name == "PYTHON_CODE_DEV":
agent = prompts.PYTHON_CODE_DEV
system_prompt=agent
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=seed,
)
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
model = pipeline('text-generation', model='microsoft/DialoGPT-small')
response = model(formatted_prompt, max_length=1024, temperature=1.0)
output = response[0]['generated_text']
return output
additional_inputs=[
gr.Dropdown(
label="Agents",
choices=[s for s in agents],
value=agents[0],
interactive=True,
),
gr.Textbox(
label="System Prompt",
max_lines=1,
interactive=True,
),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=1048*10,
minimum=0,
maximum=1048*10,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
),
]
examples=[["What are the biggest news stories today?", None, None, None, None, None, ],
["When is the next full moon?", None, None, None, None, None, ],
["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
]
import transformers
import torch
def launch_interface():
gr.ChatInterface(
fn=run,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test",
examples=examples,
concurrency_limit=20,
).launch(show_api=False)
launch_interface() |