File size: 3,821 Bytes
14415d3
 
 
1c2e9be
14415d3
1c2e9be
14415d3
 
1c2e9be
14415d3
1c2e9be
 
14415d3
 
1c2e9be
 
 
14415d3
 
1c2e9be
14415d3
 
1c2e9be
 
cef0a6e
14415d3
1c2e9be
14415d3
1c2e9be
 
cef0a6e
14415d3
1c2e9be
14415d3
1c2e9be
 
cef0a6e
14415d3
 
 
1c2e9be
14415d3
 
1c2e9be
 
14415d3
 
 
 
 
 
 
 
 
 
 
1c2e9be
14415d3
1c2e9be
14415d3
1c2e9be
14415d3
 
 
 
 
1c2e9be
1d0c268
14415d3
d249eac
 
 
14415d3
 
1c2e9be
14415d3
1c2e9be
14415d3
d4f68f1
1c2e9be
14415d3
1c2e9be
14415d3
1c2e9be
 
14415d3
 
 
 
 
1d0c268
14415d3
1c2e9be
14415d3
 
1c2e9be
14415d3
1c2e9be
 
263c6c5
14415d3
1c2e9be
 
 
14415d3
1c2e9be
 
 
14415d3
 
1c2e9be
14415d3
1c2e9be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import streamlit as st
from huggingface_hub import InferenceClient
import os
import sys

st.title("CODEFUSSION ☄")  

base_url = "https://api-inference.huggingface.co/models/"

API_KEY = os.environ.get('HUGGINGFACE_API_KEY')
# print(API_KEY)
# headers = {"Authorization":"Bearer "+API_KEY}

model_links = {
    "LegacyLift🚀": base_url + "mistralai/Mistral-7B-Instruct-v0.2",  
    "ModernMigrate⭐": base_url + "mistralai/Mixtral-8x7B-Instruct-v0.1",  
    "RetroRecode🔄": base_url + "microsoft/Phi-3-mini-4k-instruct" 
}

# Pull info about the model to display
model_info = {
    "LegacyLift🚀": {
        'description': """The LegacyLift model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
            \nThis model is best for minimal problem-solving, content writing, and daily tips.\n""",
        'logo': './11.jpg'
    },

    "ModernMigrate⭐": {
        'description': """The ModernMigrate model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
            \nThis model excels in coding, logical reasoning, and high-speed inference. \n""",
        'logo': './2.jpg'
    },

    "RetroRecode🔄": {
        'description': """The RetroRecode model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
          \nThis model is best suited for critical development, practical knowledge, and serverless inference.\n""",
        'logo': './3.jpg'
    },
}

def format_promt(message, custom_instructions=None):
    prompt = ""
    if custom_instructions:
        prompt += f"[INST] {custom_instructions} [/INST]"
    prompt += f"[INST] {message} [/INST]"
    return prompt

def reset_conversation():
    '''
    Resets Conversation
    '''
    st.session_state.conversation = []
    st.session_state.messages = []
    return None

models = [key for key in model_links.keys()]

selected_model = st.sidebar.selectbox("Select Model", models)

temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))

st.sidebar.button('Reset Chat', on_click=reset_conversation)  # Reset button

st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown(model_info[selected_model]['description'])
st.sidebar.image(model_info[selected_model]['logo'])
st.sidebar.markdown("*Generating the code might go slow if you are using low power resources *")


if "prev_option" not in st.session_state:
    st.session_state.prev_option = selected_model

if st.session_state.prev_option != selected_model:
    st.session_state.messages = []
    # st.write(f"Changed to {selected_model}")
    st.session_state.prev_option = selected_model
    reset_conversation()

repo_id = model_links[selected_model]

st.subheader(f'{selected_model}')
# st.title(f'ChatBot Using {selected_model}')

if "messages" not in st.session_state:
    st.session_state.messages = []

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

if prompt := st.chat_input(f"Hi I'm {selected_model}, How can I help you today?"):
    custom_instruction = "Act like a Human in conversation"

    with st.chat_message("user"):
        st.markdown(prompt)

    st.session_state.messages.append({"role": "user", "content": prompt})

    formated_text = format_promt(prompt, custom_instruction)

    with st.chat_message("assistant"):
        client = InferenceClient(
            model=model_links[selected_model], )

        output = client.text_generation(
            formated_text,
            temperature=temp_values,  # 0.5
            max_new_tokens=3000,
            stream=True
        )

        response = st.write_stream(output)
    st.session_state.messages.append({"role": "assistant", "content": response})