acecalisto3 commited on
Commit
09fc863
·
verified ·
1 Parent(s): 07426b3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +364 -30
app.py CHANGED
@@ -3,37 +3,272 @@ from huggingface_hub import InferenceClient
3
  import os
4
  import sys
5
  import pickle
 
6
 
7
  st.title("CODEFUSSION ☄")
8
 
9
- base_url = "https://api-inference.huggingface.co/models/"
10
- API_KEY = os.environ.get('HUGGINGFACE_API_KEY')
 
 
 
 
 
 
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  model_links = {
13
- "LegacyLift🚀": base_url + "mistralai/Mistral-7B-Instruct-v0.2",
14
- "ModernMigrate⭐": base_url + "mistralai/Mixtral-8x7B-Instruct-v0.1",
15
- "RetroRecode🔄": base_url + "microsoft/Phi-3-mini-4k-instruct"
16
  }
17
 
18
  model_info = {
19
  "LegacyLift🚀": {
20
- 'description': """The LegacyLift model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \n\nThis model is best for minimal problem-solving, content writing, and daily tips.\n""",
21
  'logo': './11.jpg'
22
  },
23
  "ModernMigrate⭐": {
24
- 'description': """The ModernMigrate model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \n\nThis model excels in coding, logical reasoning, and high-speed inference. \n""",
25
  'logo': './2.jpg'
26
  },
27
  "RetroRecode🔄": {
28
- 'description': """The RetroRecode model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \n\nThis model is best suited for critical development, practical knowledge, and serverless inference.\n""",
29
  'logo': './3.jpg'
30
  },
31
  }
32
 
33
- def format_promt(message, conversation_history, custom_instructions=None):
34
  prompt = ""
35
  if custom_instructions:
36
- prompt += f"\[INST\] {custom_instructions} \[/INST\]\n"
37
 
38
  # Add conversation history to the prompt
39
  prompt += "\[CONV_HISTORY\]\n"
@@ -42,7 +277,7 @@ def format_promt(message, conversation_history, custom_instructions=None):
42
  prompt += "\[/CONV_HISTORY\]\n"
43
 
44
  # Add the current message
45
- prompt += f"\[INST\] {message} \[/INST\]\n"
46
 
47
  # Add the response format
48
  prompt += "\[RESPONSE\]\n"
@@ -115,26 +350,125 @@ if st.session_state.chat_state == "normal":
115
  formated_text = format_promt(prompt, conversation_history, custom_instruction)
116
 
117
  with st.chat_message("assistant"):
118
- client = InferenceClient(
119
- model=model_links[selected_model], )
120
- max_new_tokens = 2048 # Adjust this value as needed
121
- try:
122
- output = client.text_generation(
123
- formated_text,
124
- temperature=temp_values,
125
- max_new_tokens=max_new_tokens,
126
- stream=True
127
- )
128
- response = st.write_stream(output)
129
- except ValueError as e:
130
- if "Input validation error" in str(e):
131
- st.error("Error: The input prompt is too long. Please try a shorter prompt.")
132
- else:
133
- st.error(f"An error occurred: {e}")
134
  else:
135
- st.session_state.messages.append({"role": "assistant", "content": response})
136
- save_conversation_history(st.session_state.messages)
 
 
 
 
 
137
 
138
  elif st.session_state.chat_state == "reset":
139
  st.session_state.chat_state = "normal"
140
- st.experimental_rerun()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  import os
4
  import sys
5
  import pickle
6
+ import json
7
 
8
  st.title("CODEFUSSION ☄")
9
 
10
+ # --- Agent Definitions ---
11
+ class Agent:
12
+ def __init__(self, name, role, tools, knowledge_base=None):
13
+ self.name = name
14
+ self.role = role
15
+ self.tools = tools
16
+ self.knowledge_base = knowledge_base
17
+ self.memory = []
18
 
19
+ def act(self, prompt, context):
20
+ self.memory.append((prompt, context))
21
+ action = self.choose_action(prompt, context)
22
+ return action
23
+
24
+ def choose_action(self, prompt, context):
25
+ # Placeholder for action selection logic
26
+ # This should be implemented based on the specific agent's capabilities
27
+ # and the available tools
28
+ return {"tool": "Code Generation", "arguments": {"language": "python", "code": "print('Hello, World!')"}}
29
+
30
+ def observe(self, observation):
31
+ # Placeholder for observation processing
32
+ # This should be implemented based on the agent's capabilities and the nature of the observation
33
+ pass
34
+
35
+ def learn(self, data):
36
+ # Placeholder for learning logic
37
+ # This should be implemented based on the agent's capabilities and the type of data
38
+ pass
39
+
40
+ def __str__(self):
41
+ return f"Agent: {self.name} (Role: {self.role})"
42
+
43
+ # --- Tool Definitions ---
44
+ class Tool:
45
+ def __init__(self, name, description):
46
+ self.name = name
47
+ self.description = description
48
+
49
+ def run(self, arguments):
50
+ # Placeholder for tool execution logic
51
+ # This should be implemented based on the specific tool's functionality
52
+ # and the provided arguments
53
+ return {"output": "Tool Output"}
54
+
55
+ # --- Tool Examples ---
56
+ class CodeGenerationTool(Tool):
57
+ def __init__(self):
58
+ super().__init__("Code Generation", "Generates code snippets in various languages.")
59
+
60
+ def run(self, arguments):
61
+ # This is a simplified example, real implementation would use a code generation model
62
+ language = arguments.get("language", "python")
63
+ code = arguments.get("code", "print('Hello, World!')")
64
+ return {"output": f"```{language}\n{code}\n```"}
65
+
66
+ class DataRetrievalTool(Tool):
67
+ def __init__(self):
68
+ super().__init__("Data Retrieval", "Accesses data from APIs, databases, or files.")
69
+
70
+ def run(self, arguments):
71
+ # This is a simplified example, real implementation would use APIs, databases, or file systems
72
+ source = arguments.get("source", "https://example.com/data")
73
+ return {"output": f"Data from {source}"}
74
+
75
+ class CodeExecutionTool(Tool):
76
+ def __init__(self):
77
+ super().__init__("Code Execution", "Runs code snippets in various languages.")
78
+
79
+ def run(self, arguments):
80
+ # This is a simplified example, real implementation would use a code execution engine
81
+ code = arguments.get("code", "print('Hello, World!')")
82
+ return {"output": f"Code executed: {code}"}
83
+
84
+ class CodeDebuggingTool(Tool):
85
+ def __init__(self):
86
+ super().__init__("Code Debugging", "Identifies and resolves errors in code snippets.")
87
+
88
+ def run(self, arguments):
89
+ # This is a simplified example, real implementation would use a code debugger
90
+ code = arguments.get("code", "print('Hello, World!')")
91
+ return {"output": f"Code debugged: {code}"}
92
+
93
+ class CodeSummarizationTool(Tool):
94
+ def __init__(self):
95
+ super().__init__("Code Summarization", "Provides a concise overview of the functionality of a code snippet.")
96
+
97
+ def run(self, arguments):
98
+ # This is a simplified example, real implementation would use a code summarization model
99
+ code = arguments.get("code", "print('Hello, World!')")
100
+ return {"output": f"Code summary: {code}"}
101
+
102
+ class CodeTranslationTool(Tool):
103
+ def __init__(self):
104
+ super().__init__("Code Translation", "Translates code snippets between different programming languages.")
105
+
106
+ def run(self, arguments):
107
+ # This is a simplified example, real implementation would use a code translation model
108
+ code = arguments.get("code", "print('Hello, World!')")
109
+ return {"output": f"Translated code: {code}"}
110
+
111
+ class CodeOptimizationTool(Tool):
112
+ def __init__(self):
113
+ super().__init__("Code Optimization", "Optimizes code for performance and efficiency.")
114
+
115
+ def run(self, arguments):
116
+ # This is a simplified example, real implementation would use a code optimization model
117
+ code = arguments.get("code", "print('Hello, World!')")
118
+ return {"output": f"Optimized code: {code}"}
119
+
120
+ class CodeDocumentationTool(Tool):
121
+ def __init__(self):
122
+ super().__init__("Code Documentation", "Generates documentation for code snippets.")
123
+
124
+ def run(self, arguments):
125
+ # This is a simplified example, real implementation would use a code documentation generator
126
+ code = arguments.get("code", "print('Hello, World!')")
127
+ return {"output": f"Code documentation: {code}"}
128
+
129
+ class ImageGenerationTool(Tool):
130
+ def __init__(self):
131
+ super().__init__("Image Generation", "Generates images based on text descriptions.")
132
+
133
+ def run(self, arguments):
134
+ # This is a simplified example, real implementation would use an image generation model
135
+ description = arguments.get("description", "A cat sitting on a couch")
136
+ return {"output": f"Generated image based on: {description}"}
137
+
138
+ class ImageEditingTool(Tool):
139
+ def __init__(self):
140
+ super().__init__("Image Editing", "Modifying existing images.")
141
+
142
+ def run(self, arguments):
143
+ # This is a simplified example, real implementation would use an image editing library
144
+ image_path = arguments.get("image_path", "path/to/image.jpg")
145
+ return {"output": f"Image edited: {image_path}"}
146
+
147
+ class ImageAnalysisTool(Tool):
148
+ def __init__(self):
149
+ super().__init__("Image Analysis", "Extracting information from images, such as objects, scenes, and emotions.")
150
+
151
+ def run(self, arguments):
152
+ # This is a simplified example, real implementation would use an image analysis model
153
+ image_path = arguments.get("image_path", "path/to/image.jpg")
154
+ return {"output": f"Image analysis results: {image_path}"}
155
+
156
+ # --- Agent Pool ---
157
+ agent_pool = {
158
+ "IdeaIntake": Agent("IdeaIntake", "Idea Intake", [DataRetrievalTool(), CodeGenerationTool(), SentimentAnalysisTool(), TextGenerationTool()], knowledge_base=""),
159
+ "CodeBuilder": Agent("CodeBuilder", "Code Builder", [CodeGenerationTool(), CodeDebuggingTool(), CodeOptimizationTool()], knowledge_base=""),
160
+ "ImageCreator": Agent("ImageCreator", "Image Creator", [ImageGenerationTool(), ImageEditingTool()], knowledge_base=""),
161
+ }
162
+
163
+ # --- Workflow Definitions ---
164
+ class Workflow:
165
+ def __init__(self, name, agents, task, description):
166
+ self.name = name
167
+ self.agents = agents
168
+ self.task = task
169
+ self.description = description
170
+
171
+ def run(self, prompt, context):
172
+ # Placeholder for workflow execution logic
173
+ # This should be implemented based on the specific workflow's steps
174
+ # and the interaction between the agents
175
+ for agent in self.agents:
176
+ action = agent.act(prompt, context)
177
+ # Execute the tool
178
+ if action.get("tool"):
179
+ tool = next((t for t in agent.tools if t.name == action["tool"]), None)
180
+ if tool:
181
+ output = tool.run(action["arguments"])
182
+ # Update context
183
+ context.update(output)
184
+ # Observe the output
185
+ agent.observe(output)
186
+ return context
187
+
188
+ # --- Workflow Examples ---
189
+ class AppBuildWorkflow(Workflow):
190
+ def __init__(self):
191
+ super().__init__("App Build", [agent_pool["IdeaIntake"], agent_pool["CodeBuilder"]], "Build a mobile application", "A workflow for building a mobile application.")
192
+
193
+ class WebsiteBuildWorkflow(Workflow):
194
+ def __init__(self):
195
+ super().__init__("Website Build", [agent_pool["IdeaIntake"], agent_pool["CodeBuilder"]], "Build a website", "A workflow for building a website.")
196
+
197
+ class GameBuildWorkflow(Workflow):
198
+ def __init__(self):
199
+ super().__init__("Game Build", [agent_pool["IdeaIntake"], agent_pool["CodeBuilder"]], "Build a game", "A workflow for building a game.")
200
+
201
+ class PluginBuildWorkflow(Workflow):
202
+ def __init__(self):
203
+ super().__init__("Plugin Build", [agent_pool["IdeaIntake"], agent_pool["CodeBuilder"]], "Build a plugin", "A workflow for building a plugin.")
204
+
205
+ class DevSandboxWorkflow(Workflow):
206
+ def __init__(self):
207
+ super().__init__("Dev Sandbox", [agent_pool["IdeaIntake"], agent_pool["CodeBuilder"]], "Experiment with code", "A workflow for experimenting with code.")
208
+
209
+ # --- Model Definitions ---
210
+ class Model:
211
+ def __init__(self, name, description, model_link):
212
+ self.name = name
213
+ self.description = description
214
+ self.model_link = model_link
215
+ self.inference_client = InferenceClient(model=model_link)
216
+
217
+ def generate_text(self, prompt, temperature=0.5, max_new_tokens=2048):
218
+ try:
219
+ output = self.inference_client.text_generation(
220
+ prompt,
221
+ temperature=temperature,
222
+ max_new_tokens=max_new_tokens,
223
+ stream=True
224
+ )
225
+ response = "".join(output)
226
+ except ValueError as e:
227
+ if "Input validation error" in str(e):
228
+ return "Error: The input prompt is too long. Please try a shorter prompt."
229
+ else:
230
+ return f"An error occurred: {e}"
231
+ return response
232
+
233
+ # --- Model Examples ---
234
+ class LegacyLiftModel(Model):
235
+ def __init__(self):
236
+ super().__init__("LegacyLift🚀", "The LegacyLift model is a Large Language Model (LLM) that's able to have question and answer interactions.\n \n\nThis model is best for minimal problem-solving, content writing, and daily tips.", "mistralai/Mistral-7B-Instruct-v0.2")
237
+
238
+ class ModernMigrateModel(Model):
239
+ def __init__(self):
240
+ super().__init__("ModernMigrate⭐", "The ModernMigrate model is a Large Language Model (LLM) that's able to have question and answer interactions.\n \n\nThis model excels in coding, logical reasoning, and high-speed inference.", "mistralai/Mixtral-8x7B-Instruct-v0.1")
241
+
242
+ class RetroRecodeModel(Model):
243
+ def __init__(self):
244
+ super().__init__("RetroRecode🔄", "The RetroRecode model is a Large Language Model (LLM) that's able to have question and answer interactions.\n \n\nThis model is best suited for critical development, practical knowledge, and serverless inference.", "microsoft/Phi-3-mini-4k-instruct")
245
+
246
+ # --- Streamlit Interface ---
247
  model_links = {
248
+ "LegacyLift🚀": "mistralai/Mistral-7B-Instruct-v0.2",
249
+ "ModernMigrate⭐": "mistralai/Mixtral-8x7B-Instruct-v0.1",
250
+ "RetroRecode🔄": "microsoft/Phi-3-mini-4k-instruct"
251
  }
252
 
253
  model_info = {
254
  "LegacyLift🚀": {
255
+ 'description': "The LegacyLift model is a Large Language Model (LLM) that's able to have question and answer interactions.\n \n\nThis model is best for minimal problem-solving, content writing, and daily tips.",
256
  'logo': './11.jpg'
257
  },
258
  "ModernMigrate⭐": {
259
+ 'description': "The ModernMigrate model is a Large Language Model (LLM) that's able to have question and answer interactions.\n \n\nThis model excels in coding, logical reasoning, and high-speed inference.",
260
  'logo': './2.jpg'
261
  },
262
  "RetroRecode🔄": {
263
+ 'description': "The RetroRecode model is a Large Language Model (LLM) that's able to have question and answer interactions.\n \n\nThis model is best suited for critical development, practical knowledge, and serverless inference.",
264
  'logo': './3.jpg'
265
  },
266
  }
267
 
268
+ def format_prompt(message, conversation_history, custom_instructions=None):
269
  prompt = ""
270
  if custom_instructions:
271
+ prompt += f"\[INST\] {custom_instructions} $$/INST$$\n"
272
 
273
  # Add conversation history to the prompt
274
  prompt += "\[CONV_HISTORY\]\n"
 
277
  prompt += "\[/CONV_HISTORY\]\n"
278
 
279
  # Add the current message
280
+ prompt += f"\[INST\] {message} $$/INST$$\n"
281
 
282
  # Add the response format
283
  prompt += "\[RESPONSE\]\n"
 
350
  formated_text = format_promt(prompt, conversation_history, custom_instruction)
351
 
352
  with st.chat_message("assistant"):
353
+ # Select the appropriate model based on the user's choice
354
+ if selected_model == "LegacyLift🚀":
355
+ model = LegacyLiftModel()
356
+ elif selected_model == "ModernMigrate⭐":
357
+ model = ModernMigrateModel()
358
+ elif selected_model == "RetroRecode🔄":
359
+ model = RetroRecodeModel()
 
 
 
 
 
 
 
 
 
360
  else:
361
+ st.error("Invalid model selection.")
362
+ return
363
+
364
+ response = model.generate_text(formated_text, temperature=temp_values)
365
+ st.markdown(response)
366
+ st.session_state.messages.append({"role": "assistant", "content": response})
367
+ save_conversation_history(st.session_state.messages)
368
 
369
  elif st.session_state.chat_state == "reset":
370
  st.session_state.chat_state = "normal"
371
+ st.experimental_rerun()
372
+
373
+ # --- Agent-Based Workflow Execution ---
374
+ def execute_workflow(workflow, prompt, context):
375
+ # Execute the workflow
376
+ context = workflow.run(prompt, context)
377
+ # Display the output
378
+ for agent in workflow.agents:
379
+ st.write(f"{agent}: {agent.memory}")
380
+ for action in agent.memory:
381
+ st.write(f" Action: {action}")
382
+ return context
383
+
384
+ # --- Example Usage ---
385
+ if st.button("Build an App"):
386
+ app_build_workflow = AppBuildWorkflow()
387
+ context = {"task": "Build a mobile application"}
388
+ context = execute_workflow(app_build_workflow, "Build a mobile app for ordering food.", context)
389
+ st.write(f"Workflow Output: {context}")
390
+
391
+ if st.button("Build a Website"):
392
+ website_build_workflow = WebsiteBuildWorkflow()
393
+ context = {"task": "Build a website"}
394
+ context = execute_workflow(website_build_workflow, "Build a website for a restaurant.", context)
395
+ st.write(f"Workflow Output: {context}")
396
+
397
+ if st.button("Build a Game"):
398
+ game_build_workflow = GameBuildWorkflow()
399
+ context = {"task": "Build a game"}
400
+ context = execute_workflow(game_build_workflow, "Build a simple 2D platformer game.", context)
401
+ st.write(f"Workflow Output: {context}")
402
+
403
+ if st.button("Build a Plugin"):
404
+ plugin_build_workflow = PluginBuildWorkflow()
405
+ context = {"task": "Build a plugin"}
406
+ context = execute_workflow(plugin_build_workflow, "Build a plugin for a text editor that adds a new syntax highlighting theme.", context)
407
+ st.write(f"Workflow Output: {context}")
408
+
409
+ if st.button("Dev Sandbox"):
410
+ dev_sandbox_workflow = DevSandboxWorkflow()
411
+ context = {"task": "Experiment with code"}
412
+ context = execute_workflow(dev_sandbox_workflow, "Write a Python function to reverse a string.", context)
413
+ st.write(f"Workflow Output: {context}")
414
+
415
+ # --- Displaying Agent and Tool Information ---
416
+ st.subheader("Agent Pool")
417
+ for agent_name, agent in agent_pool.items():
418
+ st.write(f"**{agent_name}**")
419
+ st.write(f" Role: {agent.role}")
420
+ st.write(f" Tools: {', '.join([tool.name for tool in agent.tools])}")
421
+
422
+ st.subheader("Workflows")
423
+ st.write("**App Build**")
424
+ st.write(f" Description: {AppBuildWorkflow().description}")
425
+ st.write("**Website Build**")
426
+ st.write(f" Description: {WebsiteBuildWorkflow().description}")
427
+ st.write("**Game Build**")
428
+ st.write(f" Description: {GameBuildWorkflow().description}")
429
+ st.write("**Plugin Build**")
430
+ st.write(f" Description: {PluginBuildWorkflow().description}")
431
+ st.write("**Dev Sandbox**")
432
+ st.write(f" Description: {DevSandboxWorkflow().description}")
433
+
434
+ # --- Displaying Tool Definitions ---
435
+ st.subheader("Tool Definitions")
436
+ for tool_class in [CodeGenerationTool, DataRetrievalTool, CodeExecutionTool, CodeDebuggingTool, CodeSummarizationTool, CodeTranslationTool, CodeOptimizationTool, CodeDocumentationTool, ImageGenerationTool, ImageEditingTool, ImageAnalysisTool]:
437
+ tool = tool_class()
438
+ st.write(f"**{tool.name}**")
439
+ st.write(f" Description: {tool.description}")
440
+
441
+ # --- Displaying Example Output ---
442
+ st.subheader("Example Output")
443
+ code_generation_tool = CodeGenerationTool()
444
+ st.write(f"Code Generation Tool Output: {code_generation_tool.run({'language': 'python', 'code': 'print(\'Hello, World!\')'})}")
445
+
446
+ data_retrieval_tool = DataRetrievalTool()
447
+ st.write(f"Data Retrieval Tool Output: {data_retrieval_tool.run({'source': 'https://example.com/data'})}")
448
+
449
+ code_execution_tool = CodeExecutionTool()
450
+ st.write(f"Code Execution Tool Output: {code_execution_tool.run({'code': 'print(\'Hello, World!\')'})}")
451
+
452
+ code_debugging_tool = CodeDebuggingTool()
453
+ st.write(f"Code Debugging Tool Output: {code_debugging_tool.run({'code': 'print(\'Hello, World!\')'})}")
454
+
455
+ code_summarization_tool = CodeSummarizationTool()
456
+ st.write(f"Code Summarization Tool Output: {code_summarization_tool.run({'code': 'print(\'Hello, World!\')'})}")
457
+
458
+ code_translation_tool = CodeTranslationTool()
459
+ st.write(f"Code Translation Tool Output: {code_translation_tool.run({'code': 'print(\'Hello, World!\')'})}")
460
+
461
+ code_optimization_tool = CodeOptimizationTool()
462
+ st.write(f"Code Optimization Tool Output: {code_optimization_tool.run({'code': 'print(\'Hello, World!\')'})}")
463
+
464
+ code_documentation_tool = CodeDocumentationTool()
465
+ st.write(f"Code Documentation Tool Output: {code_documentation_tool.run({'code': 'print(\'Hello, World!\')'})}")
466
+
467
+ image_generation_tool = ImageGenerationTool()
468
+ st.write(f"Image Generation Tool Output: {image_generation_tool.run({'description': 'A cat sitting on a couch'})}")
469
+
470
+ image_editing_tool = ImageEditingTool()
471
+ st.write(f"Image Editing Tool Output: {image_editing_tool.run({'image_path': 'path/to/image.jpg'})}")
472
+
473
+ image_analysis_tool = ImageAnalysisTool()
474
+ st.write(f"Image Analysis Tool Output: {image_analysis_tool.run({'image_path': 'path/to/image.jpg'})}")