Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,11 @@
|
|
1 |
import streamlit as st
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
-
import sys
|
5 |
|
6 |
st.title("CODEFUSSION ☄")
|
7 |
|
8 |
base_url = "https://api-inference.huggingface.co/models/"
|
9 |
-
|
10 |
API_KEY = os.environ.get('HUGGINGFACE_API_KEY')
|
11 |
-
# print(API_KEY)
|
12 |
-
# headers = {"Authorization":"Bearer "+API_KEY}
|
13 |
|
14 |
model_links = {
|
15 |
"LegacyLift🚀": base_url + "mistralai/Mistral-7B-Instruct-v0.2",
|
@@ -17,20 +13,17 @@ model_links = {
|
|
17 |
"RetroRecode🔄": base_url + "microsoft/Phi-3-mini-4k-instruct"
|
18 |
}
|
19 |
|
20 |
-
# Pull info about the model to display
|
21 |
model_info = {
|
22 |
"LegacyLift🚀": {
|
23 |
'description': """The LegacyLift model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
|
24 |
\nThis model is best for minimal problem-solving, content writing, and daily tips.\n""",
|
25 |
'logo': './11.jpg'
|
26 |
},
|
27 |
-
|
28 |
"ModernMigrate⭐": {
|
29 |
'description': """The ModernMigrate model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
|
30 |
\nThis model excels in coding, logical reasoning, and high-speed inference. \n""",
|
31 |
'logo': './2.jpg'
|
32 |
},
|
33 |
-
|
34 |
"RetroRecode🔄": {
|
35 |
'description': """The RetroRecode model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
|
36 |
\nThis model is best suited for critical development, practical knowledge, and serverless inference.\n""",
|
@@ -38,10 +31,16 @@ model_info = {
|
|
38 |
},
|
39 |
}
|
40 |
|
41 |
-
def
|
42 |
prompt = ""
|
43 |
if custom_instructions:
|
44 |
prompt += f"[INST] {custom_instructions} [/INST]"
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
prompt += f"[INST] {message} [/INST]"
|
46 |
return prompt
|
47 |
|
@@ -49,40 +48,35 @@ def reset_conversation():
|
|
49 |
'''
|
50 |
Resets Conversation
|
51 |
'''
|
52 |
-
st.session_state.conversation = []
|
53 |
st.session_state.messages = []
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
|
56 |
models = [key for key in model_links.keys()]
|
57 |
|
58 |
selected_model = st.sidebar.selectbox("Select Model", models)
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
st.sidebar.button('Reset Chat', on_click=reset_conversation) # Reset button
|
63 |
|
64 |
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
65 |
st.sidebar.markdown(model_info[selected_model]['description'])
|
66 |
st.sidebar.image(model_info[selected_model]['logo'])
|
67 |
st.sidebar.markdown("*Generating the code might go slow if you are using low power resources *")
|
68 |
|
69 |
-
|
70 |
if "prev_option" not in st.session_state:
|
71 |
st.session_state.prev_option = selected_model
|
72 |
|
73 |
if st.session_state.prev_option != selected_model:
|
74 |
st.session_state.messages = []
|
75 |
-
|
76 |
st.session_state.prev_option = selected_model
|
77 |
-
reset_conversation()
|
78 |
|
79 |
repo_id = model_links[selected_model]
|
80 |
|
81 |
st.subheader(f'{selected_model}')
|
82 |
-
# st.title(f'ChatBot Using {selected_model}')
|
83 |
-
|
84 |
-
if "messages" not in st.session_state:
|
85 |
-
st.session_state.messages = []
|
86 |
|
87 |
for message in st.session_state.messages:
|
88 |
with st.chat_message(message["role"]):
|
@@ -90,24 +84,19 @@ for message in st.session_state.messages:
|
|
90 |
|
91 |
if prompt := st.chat_input(f"Hi I'm {selected_model}, How can I help you today?"):
|
92 |
custom_instruction = "Act like a Human in conversation"
|
93 |
-
|
94 |
with st.chat_message("user"):
|
95 |
st.markdown(prompt)
|
96 |
-
|
97 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
|
|
98 |
|
99 |
-
|
100 |
|
101 |
with st.chat_message("assistant"):
|
102 |
-
client = InferenceClient(
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
stream=True
|
110 |
-
)
|
111 |
-
|
112 |
-
response = st.write_stream(output)
|
113 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
1 |
import streamlit as st
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import os
|
|
|
4 |
|
5 |
st.title("CODEFUSSION ☄")
|
6 |
|
7 |
base_url = "https://api-inference.huggingface.co/models/"
|
|
|
8 |
API_KEY = os.environ.get('HUGGINGFACE_API_KEY')
|
|
|
|
|
9 |
|
10 |
model_links = {
|
11 |
"LegacyLift🚀": base_url + "mistralai/Mistral-7B-Instruct-v0.2",
|
|
|
13 |
"RetroRecode🔄": base_url + "microsoft/Phi-3-mini-4k-instruct"
|
14 |
}
|
15 |
|
|
|
16 |
model_info = {
|
17 |
"LegacyLift🚀": {
|
18 |
'description': """The LegacyLift model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
|
19 |
\nThis model is best for minimal problem-solving, content writing, and daily tips.\n""",
|
20 |
'logo': './11.jpg'
|
21 |
},
|
|
|
22 |
"ModernMigrate⭐": {
|
23 |
'description': """The ModernMigrate model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
|
24 |
\nThis model excels in coding, logical reasoning, and high-speed inference. \n""",
|
25 |
'logo': './2.jpg'
|
26 |
},
|
|
|
27 |
"RetroRecode🔄": {
|
28 |
'description': """The RetroRecode model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
|
29 |
\nThis model is best suited for critical development, practical knowledge, and serverless inference.\n""",
|
|
|
31 |
},
|
32 |
}
|
33 |
|
34 |
+
def format_prompt(message, conversation_history, custom_instructions=None):
|
35 |
prompt = ""
|
36 |
if custom_instructions:
|
37 |
prompt += f"[INST] {custom_instructions} [/INST]"
|
38 |
+
|
39 |
+
prompt += "[CONV_HISTORY]\n"
|
40 |
+
for role, content in conversation_history:
|
41 |
+
prompt += f"{role.upper()}: {content}\n"
|
42 |
+
prompt += "[/CONV_HISTORY]"
|
43 |
+
|
44 |
prompt += f"[INST] {message} [/INST]"
|
45 |
return prompt
|
46 |
|
|
|
48 |
'''
|
49 |
Resets Conversation
|
50 |
'''
|
|
|
51 |
st.session_state.messages = []
|
52 |
+
st.session_state.conversation_history = []
|
53 |
+
|
54 |
+
if "messages" not in st.session_state:
|
55 |
+
st.session_state.messages = []
|
56 |
+
st.session_state.conversation_history = []
|
57 |
|
58 |
models = [key for key in model_links.keys()]
|
59 |
|
60 |
selected_model = st.sidebar.selectbox("Select Model", models)
|
61 |
+
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
|
62 |
+
st.sidebar.button('Reset Chat', on_click=reset_conversation)
|
|
|
|
|
63 |
|
64 |
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
65 |
st.sidebar.markdown(model_info[selected_model]['description'])
|
66 |
st.sidebar.image(model_info[selected_model]['logo'])
|
67 |
st.sidebar.markdown("*Generating the code might go slow if you are using low power resources *")
|
68 |
|
|
|
69 |
if "prev_option" not in st.session_state:
|
70 |
st.session_state.prev_option = selected_model
|
71 |
|
72 |
if st.session_state.prev_option != selected_model:
|
73 |
st.session_state.messages = []
|
74 |
+
st.session_state.conversation_history = []
|
75 |
st.session_state.prev_option = selected_model
|
|
|
76 |
|
77 |
repo_id = model_links[selected_model]
|
78 |
|
79 |
st.subheader(f'{selected_model}')
|
|
|
|
|
|
|
|
|
80 |
|
81 |
for message in st.session_state.messages:
|
82 |
with st.chat_message(message["role"]):
|
|
|
84 |
|
85 |
if prompt := st.chat_input(f"Hi I'm {selected_model}, How can I help you today?"):
|
86 |
custom_instruction = "Act like a Human in conversation"
|
|
|
87 |
with st.chat_message("user"):
|
88 |
st.markdown(prompt)
|
89 |
+
|
90 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
91 |
+
st.session_state.conversation_history.append(("user", prompt))
|
92 |
|
93 |
+
formatted_text = format_prompt(prompt, st.session_state.conversation_history, custom_instruction)
|
94 |
|
95 |
with st.chat_message("assistant"):
|
96 |
+
client = InferenceClient(model=model_links[selected_model])
|
97 |
+
output = client.text_generation(formatted_text, temperature=temp_values, max_new_tokens=3000, stream=True)
|
98 |
+
response = "".join([chunk for chunk in output])
|
99 |
+
st.markdown(response)
|
100 |
+
|
101 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
102 |
+
st.session_state.conversation_history.append(("assistant", response))
|
|
|
|
|
|
|
|
|
|