import streamlit as st from huggingface_hub import InferenceClient import os import sys import pickle st.title("CODEFUSSION ☄") base_url = "https://api-inference.huggingface.co/models/" API_KEY = os.environ.get('HUGGINGFACE_API_KEY') model_links = { "LegacyLift🚀": base_url + "mistralai/Mistral-7B-Instruct-v0.2", "ModernMigrate⭐": base_url + "mistralai/Mixtral-8x7B-Instruct-v0.1", "RetroRecode🔄": base_url + "microsoft/Phi-3-mini-4k-instruct" } model_info = { "LegacyLift🚀": { 'description': """The LegacyLift model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \n\nThis model is best for minimal problem-solving, content writing, and daily tips.\n""", 'logo': './11.jpg' }, "ModernMigrate⭐": { 'description': """The ModernMigrate model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \n\nThis model excels in coding, logical reasoning, and high-speed inference. \n""", 'logo': './2.jpg' }, "RetroRecode🔄": { 'description': """The RetroRecode model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \n\nThis model is best suited for critical development, practical knowledge, and serverless inference.\n""", 'logo': './3.jpg' }, } def format_promt(message, conversation_history, custom_instructions=None): prompt = "" if custom_instructions: prompt += f"\[INST\] {custom_instructions} \[/INST\]\n" # Add conversation history to the prompt prompt += "\[CONV_HISTORY\]\n" for role, content in conversation_history: prompt += f"{role.upper()}: {content}\n" prompt += "\[/CONV_HISTORY\]\n" # Add the current message prompt += f"\[INST\] {message} \[/INST\]\n" # Add the response format prompt += "\[RESPONSE\]\n" return prompt def reset_conversation(): ''' Resets Conversation ''' st.session_state.conversation = [] st.session_state.messages = [] st.session_state.chat_state = "reset" def load_conversation_history(): history_file = "conversation_history.pickle" if os.path.exists(history_file): with open(history_file, "rb") as f: conversation_history = pickle.load(f) else: conversation_history = [] return conversation_history def save_conversation_history(conversation_history): history_file = "conversation_history.pickle" with open(history_file, "wb") as f: pickle.dump(conversation_history, f) models = [key for key in model_links.keys()] selected_model = st.sidebar.selectbox("Select Model", models) temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5)) st.sidebar.button('Reset Chat', on_click=reset_conversation) # Reset button st.sidebar.write(f"You're now chatting with **{selected_model}**") st.sidebar.markdown(model_info[selected_model]['description']) st.sidebar.image(model_info[selected_model]['logo']) st.sidebar.markdown("\*Generating the code might go slow if you are using low power resources \*") if "prev_option" not in st.session_state: st.session_state.prev_option = selected_model if st.session_state.prev_option != selected_model: st.session_state.messages = [] st.session_state.prev_option = selected_model if "chat_state" not in st.session_state: st.session_state.chat_state = "normal" # Load the conversation history from the file if "messages" not in st.session_state: st.session_state.messages = load_conversation_history() repo_id = model_links[selected_model] st.subheader(f'{selected_model}') if st.session_state.chat_state == "normal": for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if prompt := st.chat_input(f"Hi I'm {selected_model}, How can I help you today?"): custom_instruction = "Act like a Human in conversation" with st.chat_message("user"): st.markdown(prompt) st.session_state.messages.append({"role": "user", "content": prompt}) conversation_history = [(message["role"], message["content"]) for message in st.session_state.messages] formated_text = format_promt(prompt, conversation_history, custom_instruction) with st.chat_message("assistant"): client = InferenceClient( model=model_links[selected_model], ) max_new_tokens = 2048 # Adjust this value as needed try: output = client.text_generation( formated_text, temperature=temp_values, max_new_tokens=max_new_tokens, stream=True ) response = st.write_stream(output) except ValueError as e: if "Input validation error" in str(e): st.error("Error: The input prompt is too long. Please try a shorter prompt.") else: st.error(f"An error occurred: {e}") else: st.session_state.messages.append({"role": "assistant", "content": response}) save_conversation_history(st.session_state.messages) elif st.session_state.chat_state == "reset": st.session_state.chat_state = "normal" st.experimental_rerun()