Spaces:
Running
Running
File size: 51,010 Bytes
1076673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 |
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ALBERT model. """
import logging
import math
import os
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss
from datetime import datetime
from transformers.models.albert.configuration_albert import AlbertConfig
from transformers.models.bert.modeling_bert import ACT2FN,BertEmbeddings, BertSelfAttention, prune_linear_layer
# from transformers.configuration_albert import AlbertConfig
# from transformers.modeling_bert import ACT2FN, BertEmbeddings, BertSelfAttention, prune_linear_layer
from transformers.modeling_utils import PreTrainedModel
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
logger = logging.getLogger(__name__)
ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
"albert-base-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-pytorch_model.bin",
"albert-large-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-pytorch_model.bin",
"albert-xlarge-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-pytorch_model.bin",
"albert-xxlarge-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-pytorch_model.bin",
"albert-base-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-v2-pytorch_model.bin",
"albert-large-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-v2-pytorch_model.bin",
"albert-xlarge-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-v2-pytorch_model.bin",
"albert-xxlarge-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-v2-pytorch_model.bin",
}
# load pretrained weights from tensorflow
def load_tf_weights_in_albert(model, config, tf_checkpoint_path):
""" Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
# Load weights from TF mode·l
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info("Loading TF weight {} with shape {}".format(name, shape))
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
print(name)
for name, array in zip(names, arrays):
original_name = name
# If saved from the TF HUB module
name = name.replace("module/", "")
# Renaming and simplifying
name = name.replace("ffn_1", "ffn")
name = name.replace("bert/", "albert/")
name = name.replace("attention_1", "attention")
name = name.replace("transform/", "")
name = name.replace("LayerNorm_1", "full_layer_layer_norm")
name = name.replace("LayerNorm", "attention/LayerNorm")
name = name.replace("transformer/", "")
# The feed forward layer had an 'intermediate' step which has been abstracted away
name = name.replace("intermediate/dense/", "")
name = name.replace("ffn/intermediate/output/dense/", "ffn_output/")
# ALBERT attention was split between self and output which have been abstracted away
name = name.replace("/output/", "/")
name = name.replace("/self/", "/")
# The pooler is a linear layer
name = name.replace("pooler/dense", "pooler")
# The classifier was simplified to predictions from cls/predictions
name = name.replace("cls/predictions", "predictions")
name = name.replace("predictions/attention", "predictions")
# Naming was changed to be more explicit
name = name.replace("embeddings/attention", "embeddings")
name = name.replace("inner_group_", "albert_layers/")
name = name.replace("group_", "albert_layer_groups/")
# Classifier
if len(name.split("/")) == 1 and ("output_bias" in name or "output_weights" in name):
name = "classifier/" + name
# No ALBERT model currently handles the next sentence prediction task
if "seq_relationship" in name:
continue
name = name.split("/")
# Ignore the gradients applied by the LAMB/ADAM optimizers.
if (
"adam_m" in name
or "adam_v" in name
or "AdamWeightDecayOptimizer" in name
or "AdamWeightDecayOptimizer_1" in name
or "global_step" in name
):
logger.info("Skipping {}".format("/".join(name)))
continue
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "output_weights":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier")
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info("Skipping {}".format("/".join(name)))
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if m_name[-11:] == "_embeddings":
pointer = getattr(pointer, "weight")
elif m_name == "kernel":
array = np.transpose(array)
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
print("Initialize PyTorch weight {} from {}".format(name, original_name))
pointer.data = torch.from_numpy(array)
return model
class AlbertEmbeddings(BertEmbeddings):
"""
Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config):
super().__init__(config)
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=0)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
self.LayerNorm = torch.nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
class AlbertAttention(BertSelfAttention):
def __init__(self, config):
super().__init__(config)
self.output_attentions = config.output_attentions
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.attention_head_size = config.hidden_size // config.num_attention_heads
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
mask = torch.ones(self.num_attention_heads, self.attention_head_size)
heads = set(heads) - self.pruned_heads # Convert to set and emove already pruned heads
for head in heads:
# Compute how many pruned heads are before the head and move the index accordingly
head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
mask[head] = 0
mask = mask.view(-1).contiguous().eq(1)
index = torch.arange(len(mask))[mask].long()
# Prune linear layers
self.query = prune_linear_layer(self.query, index)
self.key = prune_linear_layer(self.key, index)
self.value = prune_linear_layer(self.value, index)
self.dense = prune_linear_layer(self.dense, index, dim=1)
# Update hyper params and store pruned heads
self.num_attention_heads = self.num_attention_heads - len(heads)
self.all_head_size = self.attention_head_size * self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, input_ids, attention_mask=None, head_mask=None):
mixed_query_layer = self.query(input_ids)
mixed_key_layer = self.key(input_ids)
mixed_value_layer = self.value(input_ids)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
# Should find a better way to do this
w = (
self.dense.weight.t()
.view(self.num_attention_heads, self.attention_head_size, self.hidden_size)
.to(context_layer.dtype)
)
b = self.dense.bias.to(context_layer.dtype)
projected_context_layer = torch.einsum("bfnd,ndh->bfh", context_layer, w) + b
projected_context_layer_dropout = self.dropout(projected_context_layer)
layernormed_context_layer = self.LayerNorm(input_ids + projected_context_layer_dropout)
return (layernormed_context_layer, attention_probs) if self.output_attentions else (layernormed_context_layer,)
class AlbertLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.full_layer_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attention = AlbertAttention(config)
self.ffn = nn.Linear(config.hidden_size, config.intermediate_size)
self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size)
self.activation = ACT2FN[config.hidden_act]
def forward(self, hidden_states, attention_mask=None, head_mask=None):
attention_output = self.attention(hidden_states, attention_mask, head_mask)
ffn_output = self.ffn(attention_output[0])
ffn_output = self.activation(ffn_output)
ffn_output = self.ffn_output(ffn_output)
hidden_states = self.full_layer_layer_norm(ffn_output + attention_output[0])
return (hidden_states,) + attention_output[1:] # add attentions if we output them
class AlbertLayerGroup(nn.Module):
def __init__(self, config):
super().__init__()
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.albert_layers = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)])
def forward(self, hidden_states, attention_mask=None, head_mask=None):
layer_hidden_states = ()
layer_attentions = ()
for layer_index, albert_layer in enumerate(self.albert_layers):
layer_output = albert_layer(hidden_states, attention_mask, head_mask[layer_index])
hidden_states = layer_output[0]
if self.output_attentions:
layer_attentions = layer_attentions + (layer_output[1],)
if self.output_hidden_states:
layer_hidden_states = layer_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if self.output_hidden_states:
outputs = outputs + (layer_hidden_states,)
if self.output_attentions:
outputs = outputs + (layer_attentions,)
return outputs # last-layer hidden state, (layer hidden states), (layer attentions)
class AlbertTransformer(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size)
self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config) for _ in range(config.num_hidden_groups)])
def forward(self, hidden_states, attention_mask=None, head_mask=None):
hidden_states = self.embedding_hidden_mapping_in(hidden_states)
all_attentions = ()
if self.output_hidden_states:
all_hidden_states = (hidden_states,)
for i in range(self.config.num_hidden_layers):
# Number of layers in a hidden group
layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups)
# Index of the hidden group
group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups))
layer_group_output = self.albert_layer_groups[group_idx](
hidden_states,
attention_mask,
head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group],
)
hidden_states = layer_group_output[0]
if self.output_attentions:
all_attentions = all_attentions + layer_group_output[-1]
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if self.output_hidden_states:
outputs = outputs + (all_hidden_states,)
if self.output_attentions:
outputs = outputs + (all_attentions,)
return outputs # last-layer hidden state, (all hidden states), (all attentions)
def adaptive_forward(self, hidden_states, current_layer, attention_mask=None, head_mask=None):
if current_layer == 0:
hidden_states = self.embedding_hidden_mapping_in(hidden_states)
else:
hidden_states = hidden_states[0]
layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups)
# Index of the hidden group
group_idx = int(current_layer / (self.config.num_hidden_layers / self.config.num_hidden_groups))
# Index of the layer inside the group
layer_idx = int(current_layer - group_idx * layers_per_group)
layer_group_output = self.albert_layer_groups[group_idx](hidden_states, attention_mask, head_mask[group_idx * layers_per_group:(group_idx + 1) * layers_per_group])
hidden_states = layer_group_output[0]
return (hidden_states,)
class AlbertPreTrainedModel(PreTrainedModel):
""" An abstract class to handle weights initialization and
a simple interface for downloading and loading pretrained models.
"""
config_class = AlbertConfig
pretrained_model_archive_map = ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix = "albert"
def _init_weights(self, module):
""" Initialize the weights.
"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if isinstance(module, (nn.Linear)) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
ALBERT_START_DOCSTRING = r"""
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
usage and behavior.
Args:
config (:class:`~transformers.AlbertConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
ALBERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`transformers.AlbertTokenizer`.
See :func:`transformers.PreTrainedTokenizer.encode` and
:func:`transformers.PreTrainedTokenizer.encode_plus` for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
`What are attention masks? <../glossary.html#attention-mask>`__
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Segment token indices to indicate first and second portions of the inputs.
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
corresponds to a `sentence B` token
`What are token type IDs? <../glossary.html#token-type-ids>`_
position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Indices of positions of each input sequence tokens in the position embeddings.
Selected in the range ``[0, config.max_position_embeddings - 1]``.
`What are position IDs? <../glossary.html#position-ids>`_
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
:obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
input_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
"""
@add_start_docstrings(
"The bare ALBERT Model transformer outputting raw hidden-states without any specific head on top.",
ALBERT_START_DOCSTRING,
)
class AlbertModel(AlbertPreTrainedModel):
config_class = AlbertConfig
pretrained_model_archive_map = ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP
load_tf_weights = load_tf_weights_in_albert
base_model_prefix = "albert"
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = AlbertEmbeddings(config)
self.encoder = AlbertTransformer(config)
self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
self.pooler_activation = nn.Tanh()
self.init_weights()
# hyper-param for patience-based adaptive inference
self.patience = 0
# threshold for confidence-based adaptive inference
self.confidence_threshold = 0.8
# mode for fast_inference [True for patience-based/ False for confidence-based/ All classifier/ Last Classifier]
self.mode = 'patience' # [patience/confi/all/last]
self.inference_instances_num = 0
self.inference_layers_num = 0
# exits count log
self.exits_count_list = [0] * self.config.num_hidden_layers
# exits time log
self.exits_time_list = [[] for _ in range(self.config.num_hidden_layers)]
self.regression_threshold = 0
def set_regression_threshold(self, threshold):
self.regression_threshold = threshold
def set_mode(self, patience='patience'):
self.mode = patience # mode for test-time inference
def set_patience(self, patience):
self.patience = patience
def set_exit_pos(self, exit_pos):
self.exit_pos = exit_pos
def set_confi_threshold(self, confidence_threshold):
self.confidence_threshold = confidence_threshold
def reset_stats(self):
self.inference_instances_num = 0
self.inference_layers_num = 0
self.exits_count_list = [0] * self.config.num_hidden_layers
self.exits_time_list = [[] for _ in range(self.config.num_hidden_layers)]
def log_stats(self):
avg_inf_layers = self.inference_layers_num / self.inference_instances_num
message = f'*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up = {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***'
print(message)
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _resize_token_embeddings(self, new_num_tokens):
old_embeddings = self.embeddings.word_embeddings
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
self.embeddings.word_embeddings = new_embeddings
return self.embeddings.word_embeddings
def _prune_heads(self, heads_to_prune):
""" Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
ALBERT has a different architecture in that its layers are shared across groups, which then has inner groups.
If an ALBERT model has 12 hidden layers and 2 hidden groups, with two inner groups, there
is a total of 4 different layers.
These layers are flattened: the indices [0,1] correspond to the two inner groups of the first hidden layer,
while [2,3] correspond to the two inner groups of the second hidden layer.
Any layer with in index other than [0,1,2,3] will result in an error.
See base class PreTrainedModel for more information about head pruning
"""
for layer, heads in heads_to_prune.items():
group_idx = int(layer / self.config.inner_group_num)
inner_group_idx = int(layer - group_idx * self.config.inner_group_num)
self.encoder.albert_layer_groups[group_idx].albert_layers[inner_group_idx].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_dropout=None,
output_layers=None,
regression=False
):
r"""
Return:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token)
further processed by a Linear layer and a Tanh activation function. The Linear
layer weights are trained from the next sentence prediction (classification)
objective during pre-training.
This output is usually *not* a good summary
of the semantic content of the input, you're often better with averaging or pooling
the sequence of hidden-states for the whole input sequence.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Example::
from transformers import AlbertModel, AlbertTokenizer
import torch
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
model = AlbertModel.from_pretrained('albert-base-v2')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = (
head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
) # We can specify head_mask for each layer
head_mask = head_mask.to(
dtype=next(self.parameters()).dtype
) # switch to fload if need + fp16 compatibility
else:
head_mask = [None] * self.config.num_hidden_layers
embedding_output = self.embeddings(
input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
encoder_outputs = embedding_output
if self.training:
res = []
for i in range(self.config.num_hidden_layers):
encoder_outputs = self.encoder.adaptive_forward(encoder_outputs,
current_layer=i,
attention_mask=extended_attention_mask,
head_mask=head_mask
)
pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0]))
logits = output_layers[i](output_dropout(pooled_output))
res.append(logits)
elif self.mode == 'last': # Use all layers for inference [last classifier]
encoder_outputs = self.encoder(encoder_outputs,
extended_attention_mask,
head_mask=head_mask)
pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0]))
res = [output_layers[self.config.num_hidden_layers - 1](pooled_output)]
elif self.mode == 'exact':
res = []
for i in range(self.exit_pos):
encoder_outputs = self.encoder.adaptive_forward(encoder_outputs,
current_layer=i,
attention_mask=extended_attention_mask,
head_mask=head_mask
)
pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0]))
logits = output_layers[i](output_dropout(pooled_output))
res.append(logits)
elif self.mode == 'all':
tic = datetime.now()
res = []
for i in range(self.config.num_hidden_layers):
encoder_outputs = self.encoder.adaptive_forward(encoder_outputs,
current_layer=i,
attention_mask=extended_attention_mask,
head_mask=head_mask
)
pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0]))
logits = output_layers[i](output_dropout(pooled_output))
toc = datetime.now()
exit_time = (toc - tic).total_seconds()
res.append(logits)
self.exits_time_list[i].append(exit_time)
elif self.mode=='patience': # fast inference for patience-based
if self.patience <=0:
raise ValueError("Patience must be greater than 0")
patient_counter = 0
patient_result = None
calculated_layer_num = 0
# tic = datetime.now()
for i in range(self.config.num_hidden_layers):
calculated_layer_num += 1
encoder_outputs = self.encoder.adaptive_forward(encoder_outputs,
current_layer=i,
attention_mask=extended_attention_mask,
head_mask=head_mask
)
pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0]))
logits = output_layers[i](pooled_output)
if regression:
labels = logits.detach()
if patient_result is not None:
patient_labels = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold:
patient_counter += 1
else:
patient_counter = 0
else:
labels = logits.detach().argmax(dim=1)
if patient_result is not None:
patient_labels = patient_result.detach().argmax(dim=1)
if (patient_result is not None) and torch.all(labels.eq(patient_labels)):
patient_counter += 1
else:
patient_counter = 0
patient_result = logits
if patient_counter == self.patience:
break
# toc = datetime.now()
# self.exit_time = (toc - tic).total_seconds()
res = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
self.current_exit_layer = calculated_layer_num
# LOG EXIT POINTS COUNTS
self.exits_count_list[calculated_layer_num-1] += 1
elif self.mode == 'confi':
if self.confidence_threshold<0 or self.confidence_threshold>1:
raise ValueError('Confidence Threshold must be set within the range 0-1')
calculated_layer_num = 0
tic = datetime.now()
for i in range(self.config.num_hidden_layers):
calculated_layer_num += 1
encoder_outputs = self.encoder.adaptive_forward(encoder_outputs,
current_layer=i,
attention_mask=extended_attention_mask,
head_mask=head_mask
)
pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0]))
logits = output_layers[i](pooled_output)
labels = logits.detach().argmax(dim=1)
logits_max,_ = logits.detach().softmax(dim=1).max(dim=1)
confi_result = logits
if torch.all(logits_max.gt(self.confidence_threshold)):
break
toc = datetime.now()
self.exit_time = (toc - tic).total_seconds()
res = [confi_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
self.current_exit_layer = calculated_layer_num
# LOG EXIT POINTS COUNTS
self.exits_count_list[calculated_layer_num-1] += 1
return res
class AlbertMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.LayerNorm = nn.LayerNorm(config.embedding_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.dense = nn.Linear(config.hidden_size, config.embedding_size)
self.decoder = nn.Linear(config.embedding_size, config.vocab_size)
self.activation = ACT2FN[config.hidden_act]
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
hidden_states = self.decoder(hidden_states)
prediction_scores = hidden_states
return prediction_scores
@add_start_docstrings(
"Albert Model with a `language modeling` head on top.", ALBERT_START_DOCSTRING,
)
class AlbertForMaskedLM(AlbertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.albert = AlbertModel(config)
self.predictions = AlbertMLMHead(config)
self.init_weights()
self.tie_weights()
def tie_weights(self):
self._tie_or_clone_weights(self.predictions.decoder, self.albert.embeddings.word_embeddings)
def get_output_embeddings(self):
return self.predictions.decoder
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
masked_lm_labels=None,
):
r"""
masked_lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Labels for computing the masked language modeling loss.
Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with
labels in ``[0, ..., config.vocab_size]``
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Masked language modeling loss.
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Example::
from transformers import AlbertTokenizer, AlbertForMaskedLM
import torch
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
model = AlbertForMaskedLM.from_pretrained('albert-base-v2')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, masked_lm_labels=input_ids)
loss, prediction_scores = outputs[:2]
"""
outputs = self.albert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
)
sequence_outputs = outputs[0]
prediction_scores = self.predictions(sequence_outputs)
outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here
if masked_lm_labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
outputs = (masked_lm_loss,) + outputs
return outputs
@add_start_docstrings(
"""Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks. """,
ALBERT_START_DOCSTRING,
)
class AlbertForSequenceClassification(AlbertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.albert = AlbertModel(config)
self.dropout = nn.Dropout(config.classifier_dropout_prob)
self.classifiers = nn.ModuleList([nn.Linear(config.hidden_size, self.config.num_labels) for _ in range(config.num_hidden_layers)])
self.init_weights()
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
Labels for computing the sequence classification/regression loss.
Indices should be in ``[0, ..., config.num_labels - 1]``.
If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
loss: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Classification (or regression if config.num_labels==1) loss.
logits ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Examples::
from transformers import AlbertTokenizer, AlbertForSequenceClassification
import torch
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
model = AlbertForSequenceClassification.from_pretrained('albert-base-v2')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2]
"""
logits = self.albert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_dropout=self.dropout,
output_layers=self.classifiers,
regression=self.num_labels == 1
)
if self.albert.mode == 'all':
outputs = (logits,)
else:
outputs = (logits[-1],)
if labels is not None:
total_loss = None
total_weights = 0
for ix, logits_item in enumerate(logits):
if self.num_labels == 1:
# We are doing regression
loss_fct = MSELoss()
loss = loss_fct(logits_item.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits_item.view(-1, self.num_labels), labels.view(-1))
if total_loss is None:
total_loss = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
outputs = (total_loss / total_weights,) + outputs
return outputs # (loss), logits, (hidden_states), (attentions)
@add_start_docstrings(
"""Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
the hidden-states output to compute `span start logits` and `span end logits`). """,
ALBERT_START_DOCSTRING,
)
class AlbertForQuestionAnswering(AlbertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.albert = AlbertModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
start_positions=None,
end_positions=None,
):
r"""
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`).
Position outside of the sequence are not taken into account for computing the loss.
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`).
Position outside of the sequence are not taken into account for computing the loss.
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
loss: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_scores ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
Span-start scores (before SoftMax).
end_scores: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
Span-end scores (before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Examples::
# The checkpoint albert-base-v2 is not fine-tuned for question answering. Please see the
# examples/run_squad.py example to see how to fine-tune a model to a question answering task.
from transformers import AlbertTokenizer, AlbertForQuestionAnswering
import torch
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
model = AlbertForQuestionAnswering.from_pretrained('albert-base-v2')
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
input_dict = tokenizer.encode_plus(question, text, return_tensors='pt')
start_scores, end_scores = model(**input_dict)
"""
outputs = self.albert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
outputs = (start_logits, end_logits,) + outputs[2:]
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
outputs = (total_loss,) + outputs
return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions)
|