Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
model_name = "adarksky/biden-gpt2" | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Prepare the input | |
full_prompt = f"{system_message}\n\n" | |
for user_msg, assistant_msg in history: | |
full_prompt += f"Human: {user_msg}\nAssistant: {assistant_msg}\n" | |
full_prompt += f"Human: {message}\nAssistant:" | |
# Tokenize the input | |
inputs = tokenizer(full_prompt, return_tensors="pt") | |
input_ids = inputs["input_ids"] | |
# Generate the response | |
response = "" | |
for _ in range(max_tokens): | |
with torch.no_grad(): | |
outputs = model.generate( | |
input_ids, | |
max_new_tokens=1, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
new_token = outputs[0][-1] | |
token_str = tokenizer.decode(new_token) | |
if token_str == tokenizer.eos_token: | |
break | |
response += token_str | |
input_ids = outputs | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a american president", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |