adarksky's picture
-- update
06bd610 verified
raw
history blame
1.86 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "adarksky/biden-gpt2"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# Prepare the input
full_prompt = f"{system_message}\n\n"
for user_msg, assistant_msg in history:
full_prompt += f"Human: {user_msg}\nAssistant: {assistant_msg}\n"
full_prompt += f"Human: {message}\nAssistant:"
# Tokenize the input
inputs = tokenizer(full_prompt, return_tensors="pt")
input_ids = inputs["input_ids"]
# Generate the response
response = ""
for _ in range(max_tokens):
with torch.no_grad():
outputs = model.generate(
input_ids,
max_new_tokens=1,
do_sample=True,
temperature=temperature,
top_p=top_p,
)
new_token = outputs[0][-1]
token_str = tokenizer.decode(new_token)
if token_str == tokenizer.eos_token:
break
response += token_str
input_ids = outputs
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a american president", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()