import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "adarksky/biden-gpt2" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Prepare the input full_prompt = f"{system_message}\n\n" for user_msg, assistant_msg in history: full_prompt += f"Human: {user_msg}\nAssistant: {assistant_msg}\n" full_prompt += f"Human: {message}\nAssistant:" # Tokenize the input inputs = tokenizer(full_prompt, return_tensors="pt") input_ids = inputs["input_ids"] # Generate the response response = "" for _ in range(max_tokens): with torch.no_grad(): outputs = model.generate( input_ids, max_new_tokens=1, do_sample=True, temperature=temperature, top_p=top_p, ) new_token = outputs[0][-1] token_str = tokenizer.decode(new_token) if token_str == tokenizer.eos_token: break response += token_str input_ids = outputs yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a american president", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()