Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,35 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Streamlit app
|
9 |
st.title("Hugging Face Model Inference")
|
@@ -14,10 +40,36 @@ st.write("Enter your text below and get the model's response.")
|
|
14 |
input_text = st.text_area("Input Text", value="", height=200)
|
15 |
|
16 |
if st.button("Generate Response"):
|
17 |
-
if
|
|
|
|
|
18 |
with st.spinner("Generating response..."):
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
22 |
else:
|
23 |
-
st.warning("Please enter some text to generate a response.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
import streamlit as st
|
3 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel, pipeline
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Function to verify and load model and tokenizer
|
7 |
+
def load_model_and_tokenizer(model_dir):
|
8 |
+
try:
|
9 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_dir)
|
10 |
+
model = GPT2LMHeadModel.from_pretrained(model_dir)
|
11 |
+
nlp = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
12 |
+
return nlp, None
|
13 |
+
except Exception as e:
|
14 |
+
return None, str(e)
|
15 |
+
|
16 |
+
# Path to the fine-tuned model directory on Google Drive
|
17 |
+
model_dir = "adeel300/QA_doctor"
|
18 |
+
|
19 |
+
# Verify the contents of the model directory
|
20 |
+
if os.path.isdir(model_dir):
|
21 |
+
print("Contents of the model directory:")
|
22 |
+
print(os.listdir(model_dir))
|
23 |
|
24 |
+
# Check if there's a nested directory
|
25 |
+
nested_dirs = [d for d in os.listdir(model_dir) if os.path.isdir(os.path.join(model_dir, d))]
|
26 |
+
if nested_dirs:
|
27 |
+
# Update model_dir to point to the nested directory
|
28 |
+
model_dir = os.path.join(model_dir, nested_dirs[0])
|
29 |
+
print(f"Updated model directory to: {model_dir}")
|
30 |
+
|
31 |
+
# Load the model and tokenizer
|
32 |
+
nlp, error = load_model_and_tokenizer(model_dir)
|
33 |
|
34 |
# Streamlit app
|
35 |
st.title("Hugging Face Model Inference")
|
|
|
40 |
input_text = st.text_area("Input Text", value="", height=200)
|
41 |
|
42 |
if st.button("Generate Response"):
|
43 |
+
if error:
|
44 |
+
st.error(f"Error loading model or tokenizer: {error}")
|
45 |
+
elif input_text:
|
46 |
with st.spinner("Generating response..."):
|
47 |
+
try:
|
48 |
+
response = nlp(input_text, max_length=50) # Adjust max_length as needed
|
49 |
+
st.success("Response generated!")
|
50 |
+
st.text_area("Response", value=response[0]['generated_text'], height=200)
|
51 |
+
except Exception as e:
|
52 |
+
st.error(f"Error during inference: {e}")
|
53 |
else:
|
54 |
+
st.warning("Please enter some text to generate a response.")
|
55 |
+
|
56 |
+
# Save the model and tokenizer to a directory (optional)
|
57 |
+
if st.button("Save Model and Tokenizer"):
|
58 |
+
save_directory = "./saved_model"
|
59 |
+
try:
|
60 |
+
if nlp:
|
61 |
+
nlp.model.save_pretrained(save_directory)
|
62 |
+
nlp.tokenizer.save_pretrained(save_directory)
|
63 |
+
st.success("Model and tokenizer saved successfully!")
|
64 |
+
except Exception as e:
|
65 |
+
st.error(f"Error saving model or tokenizer: {e}")
|
66 |
+
|
67 |
+
# Upload the model to Hugging Face (optional)
|
68 |
+
if st.button("Upload to Hugging Face Hub"):
|
69 |
+
try:
|
70 |
+
if nlp:
|
71 |
+
nlp.model.push_to_hub("QA_doctor")
|
72 |
+
nlp.tokenizer.push_to_hub("QA_doctor")
|
73 |
+
st.success("Model and tokenizer pushed to Hugging Face Hub successfully!")
|
74 |
+
except Exception as e:
|
75 |
+
st.error(f"Error pushing model or tokenizer to Hugging Face Hub: {e}")
|