Spaces:
Runtime error
Runtime error
init app
Browse files- app.py +56 -0
- assets/.DS_Store +0 -0
- assets/cartoon.jpeg +0 -0
- assets/painting.jpeg +0 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AlignProcessor, AlignModel
|
4 |
+
|
5 |
+
|
6 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
+
|
8 |
+
processor = AlignProcessor.from_pretrained("kakaobrain/align-base")
|
9 |
+
model = AlignModel.from_pretrained("kakaobrain/align-base").to(device)
|
10 |
+
model.eval()
|
11 |
+
|
12 |
+
|
13 |
+
def predict(image, labels):
|
14 |
+
labels = labels.split(', ')
|
15 |
+
inputs = processor(images=image, text=labels, return_tensors="pt").to(device)
|
16 |
+
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = model(**inputs)
|
19 |
+
|
20 |
+
logits_per_image = outputs.logits_per_image
|
21 |
+
probs = logits_per_image.softmax(dim=1).cpu().numpy()
|
22 |
+
return {k: float(v) for k, v in zip(labels, probs[0])}
|
23 |
+
|
24 |
+
|
25 |
+
description = """
|
26 |
+
<div class="container" style="display:flex;">
|
27 |
+
<div class="image">
|
28 |
+
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/132_vit_align/align.png" alt="ALIGN performance" />
|
29 |
+
</div>
|
30 |
+
<div class="text">
|
31 |
+
<p>Gradio demo for <a href="https://huggingface.co/docs/transformers/main/en/model_doc/align">ALIGN</a>,
|
32 |
+
as introduced in <a href="https://arxiv.org/abs/2102.05918"></a><i>"Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
|
33 |
+
"</i>. ALIGN features a dual-encoder architecture with EfficientNet and BERT as its text and vision encoders, and learns to align visual and text representations with contrastive learning.
|
34 |
+
Unlike previous work, ALIGN leverages a massive noisy dataset and shows that the scale of the corpus can be used to achieve SOTA representations with a simple recipe.
|
35 |
+
\n\nALIGN is not open-sourced and the `kakaobrain/align-base` model used for this demo is based on the Kakao Brain implementation that follows the original paper.
|
36 |
+
The model is trained on the open source [COYO](https://github.com/kakaobrain/coyo-dataset) dataset by the Kakao Brain team.
|
37 |
+
To perform zero-shot image classification with ALIGN, upload an image and enter your candidate labels as free-form text separated by a comma followed by a space.</p>
|
38 |
+
</div>
|
39 |
+
</div>
|
40 |
+
"""
|
41 |
+
|
42 |
+
gr.Interface(
|
43 |
+
fn=predict,
|
44 |
+
inputs=[
|
45 |
+
gr.inputs.Image(label="Image to classify", type="pil"),
|
46 |
+
gr.inputs.Textbox(lines=1, label="Comma separated candidate labels", placeholder="Enter labels separated by ', '",)
|
47 |
+
],
|
48 |
+
theme="grass",
|
49 |
+
outputs="label",
|
50 |
+
examples=[
|
51 |
+
["assets/cartoon.jpeg", "dinosaur, drawing, forest",],
|
52 |
+
["assets/painting.jpeg", "watercolor painting, oil painting, boats",],
|
53 |
+
],
|
54 |
+
title="Zero-Shot Image Classification with ALIGN",
|
55 |
+
description=description
|
56 |
+
).launch()
|
assets/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
assets/cartoon.jpeg
ADDED
assets/painting.jpeg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
opencv-python
|
3 |
+
git+https://github.com/huggingface/transformers
|
4 |
+
|
5 |
+
|