Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
from model_irse import Backbone | |
# Use GPU if available | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
else: | |
device = torch.device("cpu") | |
class IDLoss(nn.Module): | |
def __init__(self, opts): | |
super(IDLoss, self).__init__() | |
print('Loading ResNet ArcFace') | |
self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se') | |
self.facenet.load_state_dict(torch.load("./pretrained/model_ir_se50.pth", map_location=device)) | |
self.pool = torch.nn.AdaptiveAvgPool2d((256, 256)) | |
self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112)) | |
self.facenet.eval() | |
self.opts = opts | |
def extract_feats(self, x): | |
if x.shape[2] != 256: | |
x = self.pool(x) | |
x = x[:, :, 35:223, 32:220] # Crop interesting region | |
x = self.face_pool(x) | |
x_feats = self.facenet(x) | |
return x_feats | |
def forward(self, y_hat, y): | |
n_samples = y.shape[0] | |
y_feats = self.extract_feats(y) # Otherwise use the feature from there | |
y_hat_feats = self.extract_feats(y_hat) | |
y_feats = y_feats.detach() | |
loss = 0 | |
sim_improvement = 0 | |
count = 0 | |
for i in range(n_samples): | |
diff_target = y_hat_feats[i].dot(y_feats[i]) | |
loss += 1 - diff_target | |
count += 1 | |
return loss / count, sim_improvement / count | |