import numpy as np from safetensors import safe_open from datasets import load_dataset import torch from transformers import AutoModel, AutoTokenizer import gradio as gr def load_embeddings(file_path, key="vectors"): with safe_open(file_path, framework="numpy") as f: embeddings = f.get_tensor(key) return embeddings image_embeddings = load_embeddings("clothes_desc.safetensors") image_embeddings = image_embeddings / np.linalg.norm( image_embeddings, axis=1, keepdims=True ) ds = load_dataset("wbensvage/clothes_desc")["train"] model_name = "google/siglip2-large-patch16-512" model = AutoModel.from_pretrained(model_name, device_map="cpu").eval() tokenizer = AutoTokenizer.from_pretrained(model_name) def encode_text(texts, model, tokenizer): inputs = tokenizer(texts, return_tensors="pt").to(model.device) with torch.no_grad(): embs = model.get_text_features(**inputs) embs = embs.detach().cpu().numpy() embs = embs / np.linalg.norm(embs, axis=1, keepdims=True) return embs def find_images(query, top_k): query_embedding = encode_text([query], model, tokenizer) similarity = np.dot(query_embedding, image_embeddings.T) top_k_indices = np.argsort(similarity[0])[::-1][:top_k] images = [ds[int(i)]["image"] for i in top_k_indices] return images iface = gr.Interface( fn=find_images, inputs=[ gr.Textbox(lines=2, placeholder="Enter search text here (Shift + Enter to submit)", label="Query"), gr.Slider(10, 50, step=10, value=20, label="Number of images"), ], outputs=gr.Gallery(label="Search Results", columns=5, height="auto"), title="SigLIP2 Image Search", description="The demo uses [siglip2-large-patch16-512](https://huggingface.co/google/siglip2-large-patch16-512). Compare with [Multilingual CLIP](https://huggingface.co/spaces/adorkin/m-clip-clothes).", examples=[ ["a red dress", 20], ["a blue shirt", 20], ["la blouse rouge", 20], ["la jupe bleue", 20], ["punane kleit", 20], ["sinine särk", 20], ], ) iface.launch()