lewtun HF staff commited on
Commit
424c611
Β·
1 Parent(s): 8f85395
Files changed (3) hide show
  1. app.ipynb +480 -0
  2. app.py +28 -0
  3. requirements.txt +1 -0
app.ipynb ADDED
@@ -0,0 +1,480 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "# |export\n",
10
+ "import gradio as gr\n",
11
+ "import pandas as pd"
12
+ ]
13
+ },
14
+ {
15
+ "cell_type": "code",
16
+ "execution_count": 21,
17
+ "metadata": {},
18
+ "outputs": [],
19
+ "source": [
20
+ "# |export\n",
21
+ "df = pd.read_csv(\"https://docs.google.com/spreadsheets/d/e/2PACX-1vSC40sszorOjHfozmNqJT9lFiJhG94u3fbr3Ss_7fzcU3xqqJQuW1Ie_SNcWEB-uIsBi9NBUK7-ddet/pub?output=csv\", skiprows=1)"
22
+ ]
23
+ },
24
+ {
25
+ "cell_type": "code",
26
+ "execution_count": 22,
27
+ "metadata": {},
28
+ "outputs": [],
29
+ "source": [
30
+ "# |export\n",
31
+ "# Drop footers\n",
32
+ "df = df.copy()[~df[\"Model\"].isna()]"
33
+ ]
34
+ },
35
+ {
36
+ "cell_type": "code",
37
+ "execution_count": 23,
38
+ "metadata": {},
39
+ "outputs": [],
40
+ "source": [
41
+ "# |export\n",
42
+ "# Drop TBA models\n",
43
+ "df = df.copy()[df[\"Parameters \\n(B)\"] != \"TBA\"]"
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": 24,
49
+ "metadata": {},
50
+ "outputs": [
51
+ {
52
+ "data": {
53
+ "text/html": [
54
+ "<div>\n",
55
+ "<style scoped>\n",
56
+ " .dataframe tbody tr th:only-of-type {\n",
57
+ " vertical-align: middle;\n",
58
+ " }\n",
59
+ "\n",
60
+ " .dataframe tbody tr th {\n",
61
+ " vertical-align: top;\n",
62
+ " }\n",
63
+ "\n",
64
+ " .dataframe thead th {\n",
65
+ " text-align: right;\n",
66
+ " }\n",
67
+ "</style>\n",
68
+ "<table border=\"1\" class=\"dataframe\">\n",
69
+ " <thead>\n",
70
+ " <tr style=\"text-align: right;\">\n",
71
+ " <th></th>\n",
72
+ " <th>Model</th>\n",
73
+ " <th>Lab</th>\n",
74
+ " <th>Selected \\nplaygrounds</th>\n",
75
+ " <th>Parameters \\n(B)</th>\n",
76
+ " <th>Tokens \\ntrained (B)</th>\n",
77
+ " <th>Ratio T:P\\n(Chinchilla scaling)</th>\n",
78
+ " <th>Training dataset</th>\n",
79
+ " <th>Announced\\nβ–Ό</th>\n",
80
+ " <th>Public?</th>\n",
81
+ " <th>Released</th>\n",
82
+ " <th>Paper/\\nRepo</th>\n",
83
+ " <th>Notes</th>\n",
84
+ " </tr>\n",
85
+ " </thead>\n",
86
+ " <tbody>\n",
87
+ " <tr>\n",
88
+ " <th>2</th>\n",
89
+ " <td>KOSMOS-1</td>\n",
90
+ " <td>Microsoft</td>\n",
91
+ " <td>NaN</td>\n",
92
+ " <td>1.6</td>\n",
93
+ " <td>360</td>\n",
94
+ " <td>225:1</td>\n",
95
+ " <td>πŸ†† πŸ“šβ¬† πŸ•Έ πŸŒ‹</td>\n",
96
+ " <td>Feb/2023</td>\n",
97
+ " <td>πŸ”΄</td>\n",
98
+ " <td>Feb/2023</td>\n",
99
+ " <td>πŸ”—</td>\n",
100
+ " <td>Multimodal large language model (MLLM). Raven’...</td>\n",
101
+ " </tr>\n",
102
+ " <tr>\n",
103
+ " <th>3</th>\n",
104
+ " <td>LLaMA-65B</td>\n",
105
+ " <td>Meta AI</td>\n",
106
+ " <td>https://research.facebook.com/publications/lla...</td>\n",
107
+ " <td>65</td>\n",
108
+ " <td>1400</td>\n",
109
+ " <td>22:1</td>\n",
110
+ " <td>πŸ†† πŸ“šβ¬† πŸ•Έ πŸŒ‹</td>\n",
111
+ " <td>Feb/2023</td>\n",
112
+ " <td>🟑</td>\n",
113
+ " <td>Feb/2023</td>\n",
114
+ " <td>πŸ”—</td>\n",
115
+ " <td>Researchers only, noncommercial only. 'LLaMA-6...</td>\n",
116
+ " </tr>\n",
117
+ " <tr>\n",
118
+ " <th>4</th>\n",
119
+ " <td>MOSS</td>\n",
120
+ " <td>Fudan University</td>\n",
121
+ " <td>https://moss.fastnlp.top/</td>\n",
122
+ " <td>20</td>\n",
123
+ " <td>430</td>\n",
124
+ " <td>22:1</td>\n",
125
+ " <td>πŸ•Έ πŸŒ‹</td>\n",
126
+ " <td>Feb/2023</td>\n",
127
+ " <td>🟒</td>\n",
128
+ " <td>Feb/2023</td>\n",
129
+ " <td>πŸ”—</td>\n",
130
+ " <td>Major bandwidth issues: https://www.reuters.co...</td>\n",
131
+ " </tr>\n",
132
+ " <tr>\n",
133
+ " <th>5</th>\n",
134
+ " <td>Luminous Supreme Control</td>\n",
135
+ " <td>Aleph Alpha</td>\n",
136
+ " <td>https://app.aleph-alpha.com/playground/completion</td>\n",
137
+ " <td>70</td>\n",
138
+ " <td>NaN</td>\n",
139
+ " <td>NaN</td>\n",
140
+ " <td>πŸ†† πŸ“šβ¬† πŸ•Έ πŸ‘₯</td>\n",
141
+ " <td>Feb/2023</td>\n",
142
+ " <td>🟒</td>\n",
143
+ " <td>Feb/2023</td>\n",
144
+ " <td>πŸ”—</td>\n",
145
+ " <td>β€˜Control’ means instruction tuned</td>\n",
146
+ " </tr>\n",
147
+ " <tr>\n",
148
+ " <th>6</th>\n",
149
+ " <td>Multimodal-CoT</td>\n",
150
+ " <td>Amazon</td>\n",
151
+ " <td>https://github.com/amazon-science/mm-cot</td>\n",
152
+ " <td>0.738</td>\n",
153
+ " <td>NaN</td>\n",
154
+ " <td>NaN</td>\n",
155
+ " <td>πŸŒ‹</td>\n",
156
+ " <td>Feb/2023</td>\n",
157
+ " <td>🟒</td>\n",
158
+ " <td>Feb/2023</td>\n",
159
+ " <td>πŸ”—</td>\n",
160
+ " <td>Models &lt;1B with vision CoT</td>\n",
161
+ " </tr>\n",
162
+ " </tbody>\n",
163
+ "</table>\n",
164
+ "</div>"
165
+ ],
166
+ "text/plain": [
167
+ " Model Lab \\\n",
168
+ "2 KOSMOS-1 Microsoft \n",
169
+ "3 LLaMA-65B Meta AI \n",
170
+ "4 MOSS Fudan University \n",
171
+ "5 Luminous Supreme Control Aleph Alpha \n",
172
+ "6 Multimodal-CoT Amazon \n",
173
+ "\n",
174
+ " Selected \\nplaygrounds Parameters \\n(B) \\\n",
175
+ "2 NaN 1.6 \n",
176
+ "3 https://research.facebook.com/publications/lla... 65 \n",
177
+ "4 https://moss.fastnlp.top/ 20 \n",
178
+ "5 https://app.aleph-alpha.com/playground/completion 70 \n",
179
+ "6 https://github.com/amazon-science/mm-cot 0.738 \n",
180
+ "\n",
181
+ " Tokens \\ntrained (B) Ratio T:P\\n(Chinchilla scaling) Training dataset \\\n",
182
+ "2 360 225:1 πŸ†† πŸ“šβ¬† πŸ•Έ πŸŒ‹ \n",
183
+ "3 1400 22:1 πŸ†† πŸ“šβ¬† πŸ•Έ πŸŒ‹ \n",
184
+ "4 430 22:1 πŸ•Έ πŸŒ‹ \n",
185
+ "5 NaN NaN πŸ†† πŸ“šβ¬† πŸ•Έ πŸ‘₯ \n",
186
+ "6 NaN NaN πŸŒ‹ \n",
187
+ "\n",
188
+ " Announced\\nβ–Ό Public? Released Paper/\\nRepo \\\n",
189
+ "2 Feb/2023 πŸ”΄ Feb/2023 πŸ”— \n",
190
+ "3 Feb/2023 🟑 Feb/2023 πŸ”— \n",
191
+ "4 Feb/2023 🟒 Feb/2023 πŸ”— \n",
192
+ "5 Feb/2023 🟒 Feb/2023 πŸ”— \n",
193
+ "6 Feb/2023 🟒 Feb/2023 πŸ”— \n",
194
+ "\n",
195
+ " Notes \n",
196
+ "2 Multimodal large language model (MLLM). Raven’... \n",
197
+ "3 Researchers only, noncommercial only. 'LLaMA-6... \n",
198
+ "4 Major bandwidth issues: https://www.reuters.co... \n",
199
+ "5 β€˜Control’ means instruction tuned \n",
200
+ "6 Models <1B with vision CoT "
201
+ ]
202
+ },
203
+ "execution_count": 24,
204
+ "metadata": {},
205
+ "output_type": "execute_result"
206
+ }
207
+ ],
208
+ "source": [
209
+ "df.head()"
210
+ ]
211
+ },
212
+ {
213
+ "cell_type": "code",
214
+ "execution_count": 25,
215
+ "metadata": {},
216
+ "outputs": [
217
+ {
218
+ "data": {
219
+ "text/html": [
220
+ "<div>\n",
221
+ "<style scoped>\n",
222
+ " .dataframe tbody tr th:only-of-type {\n",
223
+ " vertical-align: middle;\n",
224
+ " }\n",
225
+ "\n",
226
+ " .dataframe tbody tr th {\n",
227
+ " vertical-align: top;\n",
228
+ " }\n",
229
+ "\n",
230
+ " .dataframe thead th {\n",
231
+ " text-align: right;\n",
232
+ " }\n",
233
+ "</style>\n",
234
+ "<table border=\"1\" class=\"dataframe\">\n",
235
+ " <thead>\n",
236
+ " <tr style=\"text-align: right;\">\n",
237
+ " <th></th>\n",
238
+ " <th>Model</th>\n",
239
+ " <th>Lab</th>\n",
240
+ " <th>Selected \\nplaygrounds</th>\n",
241
+ " <th>Parameters \\n(B)</th>\n",
242
+ " <th>Tokens \\ntrained (B)</th>\n",
243
+ " <th>Ratio T:P\\n(Chinchilla scaling)</th>\n",
244
+ " <th>Training dataset</th>\n",
245
+ " <th>Announced\\nβ–Ό</th>\n",
246
+ " <th>Public?</th>\n",
247
+ " <th>Released</th>\n",
248
+ " <th>Paper/\\nRepo</th>\n",
249
+ " <th>Notes</th>\n",
250
+ " </tr>\n",
251
+ " </thead>\n",
252
+ " <tbody>\n",
253
+ " <tr>\n",
254
+ " <th>88</th>\n",
255
+ " <td>Meena</td>\n",
256
+ " <td>Google</td>\n",
257
+ " <td>NaN</td>\n",
258
+ " <td>2.6</td>\n",
259
+ " <td>10000</td>\n",
260
+ " <td>3,847:1</td>\n",
261
+ " <td>πŸ‘₯ πŸŒ‹</td>\n",
262
+ " <td>Jan/2020</td>\n",
263
+ " <td>πŸ”΄</td>\n",
264
+ " <td>Jan/2020</td>\n",
265
+ " <td>πŸ”—</td>\n",
266
+ " <td>Dialogue model. Trained 61B tokens for 164x ep...</td>\n",
267
+ " </tr>\n",
268
+ " <tr>\n",
269
+ " <th>89</th>\n",
270
+ " <td>RoBERTa</td>\n",
271
+ " <td>Meta AI</td>\n",
272
+ " <td>Hugging Face</td>\n",
273
+ " <td>0.355</td>\n",
274
+ " <td>2200</td>\n",
275
+ " <td>6,198:1</td>\n",
276
+ " <td>πŸ†† πŸ“š ⬆ πŸ•Έ</td>\n",
277
+ " <td>Jul/2019</td>\n",
278
+ " <td>🟒</td>\n",
279
+ " <td>Jul/2019</td>\n",
280
+ " <td>πŸ”—</td>\n",
281
+ " <td>See cite ROBERTA</td>\n",
282
+ " </tr>\n",
283
+ " <tr>\n",
284
+ " <th>90</th>\n",
285
+ " <td>GPT-2</td>\n",
286
+ " <td>OpenAI</td>\n",
287
+ " <td>Hugging Face</td>\n",
288
+ " <td>1.5</td>\n",
289
+ " <td>10</td>\n",
290
+ " <td>7:1</td>\n",
291
+ " <td>⬆</td>\n",
292
+ " <td>Feb/2019</td>\n",
293
+ " <td>🟒</td>\n",
294
+ " <td>Nov/2019</td>\n",
295
+ " <td>πŸ”—</td>\n",
296
+ " <td>Reddit outbound only</td>\n",
297
+ " </tr>\n",
298
+ " <tr>\n",
299
+ " <th>91</th>\n",
300
+ " <td>GPT-1</td>\n",
301
+ " <td>OpenAI</td>\n",
302
+ " <td>Hugging Face</td>\n",
303
+ " <td>0.1</td>\n",
304
+ " <td>NaN</td>\n",
305
+ " <td>NaN</td>\n",
306
+ " <td>πŸ“š</td>\n",
307
+ " <td>Jun/2018</td>\n",
308
+ " <td>🟒</td>\n",
309
+ " <td>Jun/2018</td>\n",
310
+ " <td>πŸ”—</td>\n",
311
+ " <td>Books only</td>\n",
312
+ " </tr>\n",
313
+ " <tr>\n",
314
+ " <th>92</th>\n",
315
+ " <td>BERT</td>\n",
316
+ " <td>Google</td>\n",
317
+ " <td>Hugging Face</td>\n",
318
+ " <td>0.3</td>\n",
319
+ " <td>137</td>\n",
320
+ " <td>457:1</td>\n",
321
+ " <td>πŸ†† πŸ“š</td>\n",
322
+ " <td>Oct/2018</td>\n",
323
+ " <td>🟒</td>\n",
324
+ " <td>Oct/2018</td>\n",
325
+ " <td>πŸ”—</td>\n",
326
+ " <td>NaN</td>\n",
327
+ " </tr>\n",
328
+ " </tbody>\n",
329
+ "</table>\n",
330
+ "</div>"
331
+ ],
332
+ "text/plain": [
333
+ " Model Lab Selected \\nplaygrounds Parameters \\n(B) \\\n",
334
+ "88 Meena Google NaN 2.6 \n",
335
+ "89 RoBERTa Meta AI Hugging Face 0.355 \n",
336
+ "90 GPT-2 OpenAI Hugging Face 1.5 \n",
337
+ "91 GPT-1 OpenAI Hugging Face 0.1 \n",
338
+ "92 BERT Google Hugging Face 0.3 \n",
339
+ "\n",
340
+ " Tokens \\ntrained (B) Ratio T:P\\n(Chinchilla scaling) Training dataset \\\n",
341
+ "88 10000 3,847:1 πŸ‘₯ πŸŒ‹ \n",
342
+ "89 2200 6,198:1 πŸ†† πŸ“š ⬆ πŸ•Έ \n",
343
+ "90 10 7:1 ⬆ \n",
344
+ "91 NaN NaN πŸ“š \n",
345
+ "92 137 457:1 πŸ†† πŸ“š \n",
346
+ "\n",
347
+ " Announced\\nβ–Ό Public? Released Paper/\\nRepo \\\n",
348
+ "88 Jan/2020 πŸ”΄ Jan/2020 πŸ”— \n",
349
+ "89 Jul/2019 🟒 Jul/2019 πŸ”— \n",
350
+ "90 Feb/2019 🟒 Nov/2019 πŸ”— \n",
351
+ "91 Jun/2018 🟒 Jun/2018 πŸ”— \n",
352
+ "92 Oct/2018 🟒 Oct/2018 πŸ”— \n",
353
+ "\n",
354
+ " Notes \n",
355
+ "88 Dialogue model. Trained 61B tokens for 164x ep... \n",
356
+ "89 See cite ROBERTA \n",
357
+ "90 Reddit outbound only \n",
358
+ "91 Books only \n",
359
+ "92 NaN "
360
+ ]
361
+ },
362
+ "execution_count": 25,
363
+ "metadata": {},
364
+ "output_type": "execute_result"
365
+ }
366
+ ],
367
+ "source": [
368
+ "df.tail()"
369
+ ]
370
+ },
371
+ {
372
+ "cell_type": "code",
373
+ "execution_count": 26,
374
+ "metadata": {},
375
+ "outputs": [
376
+ {
377
+ "name": "stdout",
378
+ "output_type": "stream",
379
+ "text": [
380
+ "Running on local URL: http://127.0.0.1:7862\n",
381
+ "\n",
382
+ "To create a public link, set `share=True` in `launch()`.\n"
383
+ ]
384
+ },
385
+ {
386
+ "data": {
387
+ "text/html": [
388
+ "<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
389
+ ],
390
+ "text/plain": [
391
+ "<IPython.core.display.HTML object>"
392
+ ]
393
+ },
394
+ "metadata": {},
395
+ "output_type": "display_data"
396
+ },
397
+ {
398
+ "data": {
399
+ "text/plain": []
400
+ },
401
+ "execution_count": 26,
402
+ "metadata": {},
403
+ "output_type": "execute_result"
404
+ }
405
+ ],
406
+ "source": [
407
+ "# |export\n",
408
+ "def value_func():\n",
409
+ " return df\n",
410
+ "\n",
411
+ "with gr.Blocks() as demo:\n",
412
+ " gr.DataFrame(value=value_func)\n",
413
+ "\n",
414
+ "demo.launch()"
415
+ ]
416
+ },
417
+ {
418
+ "cell_type": "code",
419
+ "execution_count": 27,
420
+ "metadata": {},
421
+ "outputs": [
422
+ {
423
+ "name": "stdout",
424
+ "output_type": "stream",
425
+ "text": [
426
+ "Closing server running on port: 7862\n"
427
+ ]
428
+ }
429
+ ],
430
+ "source": [
431
+ "demo.close()"
432
+ ]
433
+ },
434
+ {
435
+ "cell_type": "code",
436
+ "execution_count": 28,
437
+ "metadata": {},
438
+ "outputs": [],
439
+ "source": [
440
+ "from nbdev.export import nb_export\n",
441
+ "\n",
442
+ "nb_export(\"app.ipynb\", lib_path=\".\", name=\"app\")"
443
+ ]
444
+ },
445
+ {
446
+ "cell_type": "code",
447
+ "execution_count": null,
448
+ "metadata": {},
449
+ "outputs": [],
450
+ "source": []
451
+ }
452
+ ],
453
+ "metadata": {
454
+ "kernelspec": {
455
+ "display_name": "hf",
456
+ "language": "python",
457
+ "name": "python3"
458
+ },
459
+ "language_info": {
460
+ "codemirror_mode": {
461
+ "name": "ipython",
462
+ "version": 3
463
+ },
464
+ "file_extension": ".py",
465
+ "mimetype": "text/x-python",
466
+ "name": "python",
467
+ "nbconvert_exporter": "python",
468
+ "pygments_lexer": "ipython3",
469
+ "version": "3.8.13"
470
+ },
471
+ "orig_nbformat": 4,
472
+ "vscode": {
473
+ "interpreter": {
474
+ "hash": "66e5af1d4a3a75efffc7cd5a7f382675fc3ac06b0697676e06fa85c907378a99"
475
+ }
476
+ }
477
+ },
478
+ "nbformat": 4,
479
+ "nbformat_minor": 2
480
+ }
app.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
2
+
3
+ # %% auto 0
4
+ __all__ = ['df', 'value_func']
5
+
6
+ # %% app.ipynb 0
7
+ import gradio as gr
8
+ import pandas as pd
9
+
10
+ # %% app.ipynb 1
11
+ df = pd.read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vSC40sszorOjHfozmNqJT9lFiJhG94u3fbr3Ss_7fzcU3xqqJQuW1Ie_SNcWEB-uIsBi9NBUK7-ddet/pub?output=csv", skiprows=1)
12
+
13
+ # %% app.ipynb 2
14
+ # Drop footers
15
+ df = df.copy()[~df["Model"].isna()]
16
+
17
+ # %% app.ipynb 3
18
+ # Drop TBA models
19
+ df = df.copy()[df["Parameters \n(B)"] != "TBA"]
20
+
21
+ # %% app.ipynb 6
22
+ def value_func():
23
+ return df
24
+
25
+ with gr.Blocks() as demo:
26
+ gr.DataFrame(value=value_func)
27
+
28
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ pandas