Spaces:
Runtime error
Runtime error
Add files
Browse files- app.ipynb +480 -0
- app.py +28 -0
- requirements.txt +1 -0
app.ipynb
ADDED
@@ -0,0 +1,480 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# |export\n",
|
10 |
+
"import gradio as gr\n",
|
11 |
+
"import pandas as pd"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 21,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"# |export\n",
|
21 |
+
"df = pd.read_csv(\"https://docs.google.com/spreadsheets/d/e/2PACX-1vSC40sszorOjHfozmNqJT9lFiJhG94u3fbr3Ss_7fzcU3xqqJQuW1Ie_SNcWEB-uIsBi9NBUK7-ddet/pub?output=csv\", skiprows=1)"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 22,
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [],
|
29 |
+
"source": [
|
30 |
+
"# |export\n",
|
31 |
+
"# Drop footers\n",
|
32 |
+
"df = df.copy()[~df[\"Model\"].isna()]"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": 23,
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [],
|
40 |
+
"source": [
|
41 |
+
"# |export\n",
|
42 |
+
"# Drop TBA models\n",
|
43 |
+
"df = df.copy()[df[\"Parameters \\n(B)\"] != \"TBA\"]"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"execution_count": 24,
|
49 |
+
"metadata": {},
|
50 |
+
"outputs": [
|
51 |
+
{
|
52 |
+
"data": {
|
53 |
+
"text/html": [
|
54 |
+
"<div>\n",
|
55 |
+
"<style scoped>\n",
|
56 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
57 |
+
" vertical-align: middle;\n",
|
58 |
+
" }\n",
|
59 |
+
"\n",
|
60 |
+
" .dataframe tbody tr th {\n",
|
61 |
+
" vertical-align: top;\n",
|
62 |
+
" }\n",
|
63 |
+
"\n",
|
64 |
+
" .dataframe thead th {\n",
|
65 |
+
" text-align: right;\n",
|
66 |
+
" }\n",
|
67 |
+
"</style>\n",
|
68 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
69 |
+
" <thead>\n",
|
70 |
+
" <tr style=\"text-align: right;\">\n",
|
71 |
+
" <th></th>\n",
|
72 |
+
" <th>Model</th>\n",
|
73 |
+
" <th>Lab</th>\n",
|
74 |
+
" <th>Selected \\nplaygrounds</th>\n",
|
75 |
+
" <th>Parameters \\n(B)</th>\n",
|
76 |
+
" <th>Tokens \\ntrained (B)</th>\n",
|
77 |
+
" <th>Ratio T:P\\n(Chinchilla scaling)</th>\n",
|
78 |
+
" <th>Training dataset</th>\n",
|
79 |
+
" <th>Announced\\nβΌ</th>\n",
|
80 |
+
" <th>Public?</th>\n",
|
81 |
+
" <th>Released</th>\n",
|
82 |
+
" <th>Paper/\\nRepo</th>\n",
|
83 |
+
" <th>Notes</th>\n",
|
84 |
+
" </tr>\n",
|
85 |
+
" </thead>\n",
|
86 |
+
" <tbody>\n",
|
87 |
+
" <tr>\n",
|
88 |
+
" <th>2</th>\n",
|
89 |
+
" <td>KOSMOS-1</td>\n",
|
90 |
+
" <td>Microsoft</td>\n",
|
91 |
+
" <td>NaN</td>\n",
|
92 |
+
" <td>1.6</td>\n",
|
93 |
+
" <td>360</td>\n",
|
94 |
+
" <td>225:1</td>\n",
|
95 |
+
" <td>π πβ¬ πΈ π</td>\n",
|
96 |
+
" <td>Feb/2023</td>\n",
|
97 |
+
" <td>π΄</td>\n",
|
98 |
+
" <td>Feb/2023</td>\n",
|
99 |
+
" <td>π</td>\n",
|
100 |
+
" <td>Multimodal large language model (MLLM). Ravenβ...</td>\n",
|
101 |
+
" </tr>\n",
|
102 |
+
" <tr>\n",
|
103 |
+
" <th>3</th>\n",
|
104 |
+
" <td>LLaMA-65B</td>\n",
|
105 |
+
" <td>Meta AI</td>\n",
|
106 |
+
" <td>https://research.facebook.com/publications/lla...</td>\n",
|
107 |
+
" <td>65</td>\n",
|
108 |
+
" <td>1400</td>\n",
|
109 |
+
" <td>22:1</td>\n",
|
110 |
+
" <td>π πβ¬ πΈ π</td>\n",
|
111 |
+
" <td>Feb/2023</td>\n",
|
112 |
+
" <td>π‘</td>\n",
|
113 |
+
" <td>Feb/2023</td>\n",
|
114 |
+
" <td>π</td>\n",
|
115 |
+
" <td>Researchers only, noncommercial only. 'LLaMA-6...</td>\n",
|
116 |
+
" </tr>\n",
|
117 |
+
" <tr>\n",
|
118 |
+
" <th>4</th>\n",
|
119 |
+
" <td>MOSS</td>\n",
|
120 |
+
" <td>Fudan University</td>\n",
|
121 |
+
" <td>https://moss.fastnlp.top/</td>\n",
|
122 |
+
" <td>20</td>\n",
|
123 |
+
" <td>430</td>\n",
|
124 |
+
" <td>22:1</td>\n",
|
125 |
+
" <td>πΈ π</td>\n",
|
126 |
+
" <td>Feb/2023</td>\n",
|
127 |
+
" <td>π’</td>\n",
|
128 |
+
" <td>Feb/2023</td>\n",
|
129 |
+
" <td>π</td>\n",
|
130 |
+
" <td>Major bandwidth issues: https://www.reuters.co...</td>\n",
|
131 |
+
" </tr>\n",
|
132 |
+
" <tr>\n",
|
133 |
+
" <th>5</th>\n",
|
134 |
+
" <td>Luminous Supreme Control</td>\n",
|
135 |
+
" <td>Aleph Alpha</td>\n",
|
136 |
+
" <td>https://app.aleph-alpha.com/playground/completion</td>\n",
|
137 |
+
" <td>70</td>\n",
|
138 |
+
" <td>NaN</td>\n",
|
139 |
+
" <td>NaN</td>\n",
|
140 |
+
" <td>π πβ¬ πΈ π₯</td>\n",
|
141 |
+
" <td>Feb/2023</td>\n",
|
142 |
+
" <td>π’</td>\n",
|
143 |
+
" <td>Feb/2023</td>\n",
|
144 |
+
" <td>π</td>\n",
|
145 |
+
" <td>βControlβ means instruction tuned</td>\n",
|
146 |
+
" </tr>\n",
|
147 |
+
" <tr>\n",
|
148 |
+
" <th>6</th>\n",
|
149 |
+
" <td>Multimodal-CoT</td>\n",
|
150 |
+
" <td>Amazon</td>\n",
|
151 |
+
" <td>https://github.com/amazon-science/mm-cot</td>\n",
|
152 |
+
" <td>0.738</td>\n",
|
153 |
+
" <td>NaN</td>\n",
|
154 |
+
" <td>NaN</td>\n",
|
155 |
+
" <td>π</td>\n",
|
156 |
+
" <td>Feb/2023</td>\n",
|
157 |
+
" <td>π’</td>\n",
|
158 |
+
" <td>Feb/2023</td>\n",
|
159 |
+
" <td>π</td>\n",
|
160 |
+
" <td>Models <1B with vision CoT</td>\n",
|
161 |
+
" </tr>\n",
|
162 |
+
" </tbody>\n",
|
163 |
+
"</table>\n",
|
164 |
+
"</div>"
|
165 |
+
],
|
166 |
+
"text/plain": [
|
167 |
+
" Model Lab \\\n",
|
168 |
+
"2 KOSMOS-1 Microsoft \n",
|
169 |
+
"3 LLaMA-65B Meta AI \n",
|
170 |
+
"4 MOSS Fudan University \n",
|
171 |
+
"5 Luminous Supreme Control Aleph Alpha \n",
|
172 |
+
"6 Multimodal-CoT Amazon \n",
|
173 |
+
"\n",
|
174 |
+
" Selected \\nplaygrounds Parameters \\n(B) \\\n",
|
175 |
+
"2 NaN 1.6 \n",
|
176 |
+
"3 https://research.facebook.com/publications/lla... 65 \n",
|
177 |
+
"4 https://moss.fastnlp.top/ 20 \n",
|
178 |
+
"5 https://app.aleph-alpha.com/playground/completion 70 \n",
|
179 |
+
"6 https://github.com/amazon-science/mm-cot 0.738 \n",
|
180 |
+
"\n",
|
181 |
+
" Tokens \\ntrained (B) Ratio T:P\\n(Chinchilla scaling) Training dataset \\\n",
|
182 |
+
"2 360 225:1 π πβ¬ πΈ π \n",
|
183 |
+
"3 1400 22:1 π πβ¬ πΈ π \n",
|
184 |
+
"4 430 22:1 πΈ π \n",
|
185 |
+
"5 NaN NaN π πβ¬ πΈ π₯ \n",
|
186 |
+
"6 NaN NaN π \n",
|
187 |
+
"\n",
|
188 |
+
" Announced\\nβΌ Public? Released Paper/\\nRepo \\\n",
|
189 |
+
"2 Feb/2023 π΄ Feb/2023 π \n",
|
190 |
+
"3 Feb/2023 π‘ Feb/2023 π \n",
|
191 |
+
"4 Feb/2023 π’ Feb/2023 π \n",
|
192 |
+
"5 Feb/2023 π’ Feb/2023 π \n",
|
193 |
+
"6 Feb/2023 π’ Feb/2023 π \n",
|
194 |
+
"\n",
|
195 |
+
" Notes \n",
|
196 |
+
"2 Multimodal large language model (MLLM). Ravenβ... \n",
|
197 |
+
"3 Researchers only, noncommercial only. 'LLaMA-6... \n",
|
198 |
+
"4 Major bandwidth issues: https://www.reuters.co... \n",
|
199 |
+
"5 βControlβ means instruction tuned \n",
|
200 |
+
"6 Models <1B with vision CoT "
|
201 |
+
]
|
202 |
+
},
|
203 |
+
"execution_count": 24,
|
204 |
+
"metadata": {},
|
205 |
+
"output_type": "execute_result"
|
206 |
+
}
|
207 |
+
],
|
208 |
+
"source": [
|
209 |
+
"df.head()"
|
210 |
+
]
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"cell_type": "code",
|
214 |
+
"execution_count": 25,
|
215 |
+
"metadata": {},
|
216 |
+
"outputs": [
|
217 |
+
{
|
218 |
+
"data": {
|
219 |
+
"text/html": [
|
220 |
+
"<div>\n",
|
221 |
+
"<style scoped>\n",
|
222 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
223 |
+
" vertical-align: middle;\n",
|
224 |
+
" }\n",
|
225 |
+
"\n",
|
226 |
+
" .dataframe tbody tr th {\n",
|
227 |
+
" vertical-align: top;\n",
|
228 |
+
" }\n",
|
229 |
+
"\n",
|
230 |
+
" .dataframe thead th {\n",
|
231 |
+
" text-align: right;\n",
|
232 |
+
" }\n",
|
233 |
+
"</style>\n",
|
234 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
235 |
+
" <thead>\n",
|
236 |
+
" <tr style=\"text-align: right;\">\n",
|
237 |
+
" <th></th>\n",
|
238 |
+
" <th>Model</th>\n",
|
239 |
+
" <th>Lab</th>\n",
|
240 |
+
" <th>Selected \\nplaygrounds</th>\n",
|
241 |
+
" <th>Parameters \\n(B)</th>\n",
|
242 |
+
" <th>Tokens \\ntrained (B)</th>\n",
|
243 |
+
" <th>Ratio T:P\\n(Chinchilla scaling)</th>\n",
|
244 |
+
" <th>Training dataset</th>\n",
|
245 |
+
" <th>Announced\\nβΌ</th>\n",
|
246 |
+
" <th>Public?</th>\n",
|
247 |
+
" <th>Released</th>\n",
|
248 |
+
" <th>Paper/\\nRepo</th>\n",
|
249 |
+
" <th>Notes</th>\n",
|
250 |
+
" </tr>\n",
|
251 |
+
" </thead>\n",
|
252 |
+
" <tbody>\n",
|
253 |
+
" <tr>\n",
|
254 |
+
" <th>88</th>\n",
|
255 |
+
" <td>Meena</td>\n",
|
256 |
+
" <td>Google</td>\n",
|
257 |
+
" <td>NaN</td>\n",
|
258 |
+
" <td>2.6</td>\n",
|
259 |
+
" <td>10000</td>\n",
|
260 |
+
" <td>3,847:1</td>\n",
|
261 |
+
" <td>π₯ π</td>\n",
|
262 |
+
" <td>Jan/2020</td>\n",
|
263 |
+
" <td>π΄</td>\n",
|
264 |
+
" <td>Jan/2020</td>\n",
|
265 |
+
" <td>π</td>\n",
|
266 |
+
" <td>Dialogue model. Trained 61B tokens for 164x ep...</td>\n",
|
267 |
+
" </tr>\n",
|
268 |
+
" <tr>\n",
|
269 |
+
" <th>89</th>\n",
|
270 |
+
" <td>RoBERTa</td>\n",
|
271 |
+
" <td>Meta AI</td>\n",
|
272 |
+
" <td>Hugging Face</td>\n",
|
273 |
+
" <td>0.355</td>\n",
|
274 |
+
" <td>2200</td>\n",
|
275 |
+
" <td>6,198:1</td>\n",
|
276 |
+
" <td>π π β¬ πΈ</td>\n",
|
277 |
+
" <td>Jul/2019</td>\n",
|
278 |
+
" <td>π’</td>\n",
|
279 |
+
" <td>Jul/2019</td>\n",
|
280 |
+
" <td>π</td>\n",
|
281 |
+
" <td>See cite ROBERTA</td>\n",
|
282 |
+
" </tr>\n",
|
283 |
+
" <tr>\n",
|
284 |
+
" <th>90</th>\n",
|
285 |
+
" <td>GPT-2</td>\n",
|
286 |
+
" <td>OpenAI</td>\n",
|
287 |
+
" <td>Hugging Face</td>\n",
|
288 |
+
" <td>1.5</td>\n",
|
289 |
+
" <td>10</td>\n",
|
290 |
+
" <td>7:1</td>\n",
|
291 |
+
" <td>β¬</td>\n",
|
292 |
+
" <td>Feb/2019</td>\n",
|
293 |
+
" <td>π’</td>\n",
|
294 |
+
" <td>Nov/2019</td>\n",
|
295 |
+
" <td>π</td>\n",
|
296 |
+
" <td>Reddit outbound only</td>\n",
|
297 |
+
" </tr>\n",
|
298 |
+
" <tr>\n",
|
299 |
+
" <th>91</th>\n",
|
300 |
+
" <td>GPT-1</td>\n",
|
301 |
+
" <td>OpenAI</td>\n",
|
302 |
+
" <td>Hugging Face</td>\n",
|
303 |
+
" <td>0.1</td>\n",
|
304 |
+
" <td>NaN</td>\n",
|
305 |
+
" <td>NaN</td>\n",
|
306 |
+
" <td>π</td>\n",
|
307 |
+
" <td>Jun/2018</td>\n",
|
308 |
+
" <td>π’</td>\n",
|
309 |
+
" <td>Jun/2018</td>\n",
|
310 |
+
" <td>π</td>\n",
|
311 |
+
" <td>Books only</td>\n",
|
312 |
+
" </tr>\n",
|
313 |
+
" <tr>\n",
|
314 |
+
" <th>92</th>\n",
|
315 |
+
" <td>BERT</td>\n",
|
316 |
+
" <td>Google</td>\n",
|
317 |
+
" <td>Hugging Face</td>\n",
|
318 |
+
" <td>0.3</td>\n",
|
319 |
+
" <td>137</td>\n",
|
320 |
+
" <td>457:1</td>\n",
|
321 |
+
" <td>π π</td>\n",
|
322 |
+
" <td>Oct/2018</td>\n",
|
323 |
+
" <td>π’</td>\n",
|
324 |
+
" <td>Oct/2018</td>\n",
|
325 |
+
" <td>π</td>\n",
|
326 |
+
" <td>NaN</td>\n",
|
327 |
+
" </tr>\n",
|
328 |
+
" </tbody>\n",
|
329 |
+
"</table>\n",
|
330 |
+
"</div>"
|
331 |
+
],
|
332 |
+
"text/plain": [
|
333 |
+
" Model Lab Selected \\nplaygrounds Parameters \\n(B) \\\n",
|
334 |
+
"88 Meena Google NaN 2.6 \n",
|
335 |
+
"89 RoBERTa Meta AI Hugging Face 0.355 \n",
|
336 |
+
"90 GPT-2 OpenAI Hugging Face 1.5 \n",
|
337 |
+
"91 GPT-1 OpenAI Hugging Face 0.1 \n",
|
338 |
+
"92 BERT Google Hugging Face 0.3 \n",
|
339 |
+
"\n",
|
340 |
+
" Tokens \\ntrained (B) Ratio T:P\\n(Chinchilla scaling) Training dataset \\\n",
|
341 |
+
"88 10000 3,847:1 π₯ π \n",
|
342 |
+
"89 2200 6,198:1 π π β¬ πΈ \n",
|
343 |
+
"90 10 7:1 β¬ \n",
|
344 |
+
"91 NaN NaN π \n",
|
345 |
+
"92 137 457:1 π π \n",
|
346 |
+
"\n",
|
347 |
+
" Announced\\nβΌ Public? Released Paper/\\nRepo \\\n",
|
348 |
+
"88 Jan/2020 π΄ Jan/2020 π \n",
|
349 |
+
"89 Jul/2019 π’ Jul/2019 π \n",
|
350 |
+
"90 Feb/2019 π’ Nov/2019 π \n",
|
351 |
+
"91 Jun/2018 π’ Jun/2018 π \n",
|
352 |
+
"92 Oct/2018 π’ Oct/2018 π \n",
|
353 |
+
"\n",
|
354 |
+
" Notes \n",
|
355 |
+
"88 Dialogue model. Trained 61B tokens for 164x ep... \n",
|
356 |
+
"89 See cite ROBERTA \n",
|
357 |
+
"90 Reddit outbound only \n",
|
358 |
+
"91 Books only \n",
|
359 |
+
"92 NaN "
|
360 |
+
]
|
361 |
+
},
|
362 |
+
"execution_count": 25,
|
363 |
+
"metadata": {},
|
364 |
+
"output_type": "execute_result"
|
365 |
+
}
|
366 |
+
],
|
367 |
+
"source": [
|
368 |
+
"df.tail()"
|
369 |
+
]
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"cell_type": "code",
|
373 |
+
"execution_count": 26,
|
374 |
+
"metadata": {},
|
375 |
+
"outputs": [
|
376 |
+
{
|
377 |
+
"name": "stdout",
|
378 |
+
"output_type": "stream",
|
379 |
+
"text": [
|
380 |
+
"Running on local URL: http://127.0.0.1:7862\n",
|
381 |
+
"\n",
|
382 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
383 |
+
]
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"data": {
|
387 |
+
"text/html": [
|
388 |
+
"<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
389 |
+
],
|
390 |
+
"text/plain": [
|
391 |
+
"<IPython.core.display.HTML object>"
|
392 |
+
]
|
393 |
+
},
|
394 |
+
"metadata": {},
|
395 |
+
"output_type": "display_data"
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"data": {
|
399 |
+
"text/plain": []
|
400 |
+
},
|
401 |
+
"execution_count": 26,
|
402 |
+
"metadata": {},
|
403 |
+
"output_type": "execute_result"
|
404 |
+
}
|
405 |
+
],
|
406 |
+
"source": [
|
407 |
+
"# |export\n",
|
408 |
+
"def value_func():\n",
|
409 |
+
" return df\n",
|
410 |
+
"\n",
|
411 |
+
"with gr.Blocks() as demo:\n",
|
412 |
+
" gr.DataFrame(value=value_func)\n",
|
413 |
+
"\n",
|
414 |
+
"demo.launch()"
|
415 |
+
]
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"cell_type": "code",
|
419 |
+
"execution_count": 27,
|
420 |
+
"metadata": {},
|
421 |
+
"outputs": [
|
422 |
+
{
|
423 |
+
"name": "stdout",
|
424 |
+
"output_type": "stream",
|
425 |
+
"text": [
|
426 |
+
"Closing server running on port: 7862\n"
|
427 |
+
]
|
428 |
+
}
|
429 |
+
],
|
430 |
+
"source": [
|
431 |
+
"demo.close()"
|
432 |
+
]
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"cell_type": "code",
|
436 |
+
"execution_count": 28,
|
437 |
+
"metadata": {},
|
438 |
+
"outputs": [],
|
439 |
+
"source": [
|
440 |
+
"from nbdev.export import nb_export\n",
|
441 |
+
"\n",
|
442 |
+
"nb_export(\"app.ipynb\", lib_path=\".\", name=\"app\")"
|
443 |
+
]
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"cell_type": "code",
|
447 |
+
"execution_count": null,
|
448 |
+
"metadata": {},
|
449 |
+
"outputs": [],
|
450 |
+
"source": []
|
451 |
+
}
|
452 |
+
],
|
453 |
+
"metadata": {
|
454 |
+
"kernelspec": {
|
455 |
+
"display_name": "hf",
|
456 |
+
"language": "python",
|
457 |
+
"name": "python3"
|
458 |
+
},
|
459 |
+
"language_info": {
|
460 |
+
"codemirror_mode": {
|
461 |
+
"name": "ipython",
|
462 |
+
"version": 3
|
463 |
+
},
|
464 |
+
"file_extension": ".py",
|
465 |
+
"mimetype": "text/x-python",
|
466 |
+
"name": "python",
|
467 |
+
"nbconvert_exporter": "python",
|
468 |
+
"pygments_lexer": "ipython3",
|
469 |
+
"version": "3.8.13"
|
470 |
+
},
|
471 |
+
"orig_nbformat": 4,
|
472 |
+
"vscode": {
|
473 |
+
"interpreter": {
|
474 |
+
"hash": "66e5af1d4a3a75efffc7cd5a7f382675fc3ac06b0697676e06fa85c907378a99"
|
475 |
+
}
|
476 |
+
}
|
477 |
+
},
|
478 |
+
"nbformat": 4,
|
479 |
+
"nbformat_minor": 2
|
480 |
+
}
|
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
|
2 |
+
|
3 |
+
# %% auto 0
|
4 |
+
__all__ = ['df', 'value_func']
|
5 |
+
|
6 |
+
# %% app.ipynb 0
|
7 |
+
import gradio as gr
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
# %% app.ipynb 1
|
11 |
+
df = pd.read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vSC40sszorOjHfozmNqJT9lFiJhG94u3fbr3Ss_7fzcU3xqqJQuW1Ie_SNcWEB-uIsBi9NBUK7-ddet/pub?output=csv", skiprows=1)
|
12 |
+
|
13 |
+
# %% app.ipynb 2
|
14 |
+
# Drop footers
|
15 |
+
df = df.copy()[~df["Model"].isna()]
|
16 |
+
|
17 |
+
# %% app.ipynb 3
|
18 |
+
# Drop TBA models
|
19 |
+
df = df.copy()[df["Parameters \n(B)"] != "TBA"]
|
20 |
+
|
21 |
+
# %% app.ipynb 6
|
22 |
+
def value_func():
|
23 |
+
return df
|
24 |
+
|
25 |
+
with gr.Blocks() as demo:
|
26 |
+
gr.DataFrame(value=value_func)
|
27 |
+
|
28 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pandas
|