{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# |export\n",
"import gradio as gr\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"# |export\n",
"df = pd.read_csv(\"https://docs.google.com/spreadsheets/d/e/2PACX-1vSC40sszorOjHfozmNqJT9lFiJhG94u3fbr3Ss_7fzcU3xqqJQuW1Ie_SNcWEB-uIsBi9NBUK7-ddet/pub?output=csv\", skiprows=1)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"# |export\n",
"# Drop footers\n",
"df = df.copy()[~df[\"Model\"].isna()]"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"# |export\n",
"# Drop TBA models\n",
"df = df.copy()[df[\"Parameters \\n(B)\"] != \"TBA\"]"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Model | \n",
" Lab | \n",
" Selected \\nplaygrounds | \n",
" Parameters \\n(B) | \n",
" Tokens \\ntrained (B) | \n",
" Ratio T:P\\n(Chinchilla scaling) | \n",
" Training dataset | \n",
" Announced\\nβΌ | \n",
" Public? | \n",
" Released | \n",
" Paper/\\nRepo | \n",
" Notes | \n",
"
\n",
" \n",
" \n",
" \n",
" 2 | \n",
" KOSMOS-1 | \n",
" Microsoft | \n",
" NaN | \n",
" 1.6 | \n",
" 360 | \n",
" 225:1 | \n",
" π πβ¬ πΈ π | \n",
" Feb/2023 | \n",
" π΄ | \n",
" Feb/2023 | \n",
" π | \n",
" Multimodal large language model (MLLM). Ravenβ... | \n",
"
\n",
" \n",
" 3 | \n",
" LLaMA-65B | \n",
" Meta AI | \n",
" https://research.facebook.com/publications/lla... | \n",
" 65 | \n",
" 1400 | \n",
" 22:1 | \n",
" π πβ¬ πΈ π | \n",
" Feb/2023 | \n",
" π‘ | \n",
" Feb/2023 | \n",
" π | \n",
" Researchers only, noncommercial only. 'LLaMA-6... | \n",
"
\n",
" \n",
" 4 | \n",
" MOSS | \n",
" Fudan University | \n",
" https://moss.fastnlp.top/ | \n",
" 20 | \n",
" 430 | \n",
" 22:1 | \n",
" πΈ π | \n",
" Feb/2023 | \n",
" π’ | \n",
" Feb/2023 | \n",
" π | \n",
" Major bandwidth issues: https://www.reuters.co... | \n",
"
\n",
" \n",
" 5 | \n",
" Luminous Supreme Control | \n",
" Aleph Alpha | \n",
" https://app.aleph-alpha.com/playground/completion | \n",
" 70 | \n",
" NaN | \n",
" NaN | \n",
" π πβ¬ πΈ π₯ | \n",
" Feb/2023 | \n",
" π’ | \n",
" Feb/2023 | \n",
" π | \n",
" βControlβ means instruction tuned | \n",
"
\n",
" \n",
" 6 | \n",
" Multimodal-CoT | \n",
" Amazon | \n",
" https://github.com/amazon-science/mm-cot | \n",
" 0.738 | \n",
" NaN | \n",
" NaN | \n",
" π | \n",
" Feb/2023 | \n",
" π’ | \n",
" Feb/2023 | \n",
" π | \n",
" Models <1B with vision CoT | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Model Lab \\\n",
"2 KOSMOS-1 Microsoft \n",
"3 LLaMA-65B Meta AI \n",
"4 MOSS Fudan University \n",
"5 Luminous Supreme Control Aleph Alpha \n",
"6 Multimodal-CoT Amazon \n",
"\n",
" Selected \\nplaygrounds Parameters \\n(B) \\\n",
"2 NaN 1.6 \n",
"3 https://research.facebook.com/publications/lla... 65 \n",
"4 https://moss.fastnlp.top/ 20 \n",
"5 https://app.aleph-alpha.com/playground/completion 70 \n",
"6 https://github.com/amazon-science/mm-cot 0.738 \n",
"\n",
" Tokens \\ntrained (B) Ratio T:P\\n(Chinchilla scaling) Training dataset \\\n",
"2 360 225:1 π πβ¬ πΈ π \n",
"3 1400 22:1 π πβ¬ πΈ π \n",
"4 430 22:1 πΈ π \n",
"5 NaN NaN π πβ¬ πΈ π₯ \n",
"6 NaN NaN π \n",
"\n",
" Announced\\nβΌ Public? Released Paper/\\nRepo \\\n",
"2 Feb/2023 π΄ Feb/2023 π \n",
"3 Feb/2023 π‘ Feb/2023 π \n",
"4 Feb/2023 π’ Feb/2023 π \n",
"5 Feb/2023 π’ Feb/2023 π \n",
"6 Feb/2023 π’ Feb/2023 π \n",
"\n",
" Notes \n",
"2 Multimodal large language model (MLLM). Ravenβ... \n",
"3 Researchers only, noncommercial only. 'LLaMA-6... \n",
"4 Major bandwidth issues: https://www.reuters.co... \n",
"5 βControlβ means instruction tuned \n",
"6 Models <1B with vision CoT "
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Model | \n",
" Lab | \n",
" Selected \\nplaygrounds | \n",
" Parameters \\n(B) | \n",
" Tokens \\ntrained (B) | \n",
" Ratio T:P\\n(Chinchilla scaling) | \n",
" Training dataset | \n",
" Announced\\nβΌ | \n",
" Public? | \n",
" Released | \n",
" Paper/\\nRepo | \n",
" Notes | \n",
"
\n",
" \n",
" \n",
" \n",
" 88 | \n",
" Meena | \n",
" Google | \n",
" NaN | \n",
" 2.6 | \n",
" 10000 | \n",
" 3,847:1 | \n",
" π₯ π | \n",
" Jan/2020 | \n",
" π΄ | \n",
" Jan/2020 | \n",
" π | \n",
" Dialogue model. Trained 61B tokens for 164x ep... | \n",
"
\n",
" \n",
" 89 | \n",
" RoBERTa | \n",
" Meta AI | \n",
" Hugging Face | \n",
" 0.355 | \n",
" 2200 | \n",
" 6,198:1 | \n",
" π π β¬ πΈ | \n",
" Jul/2019 | \n",
" π’ | \n",
" Jul/2019 | \n",
" π | \n",
" See cite ROBERTA | \n",
"
\n",
" \n",
" 90 | \n",
" GPT-2 | \n",
" OpenAI | \n",
" Hugging Face | \n",
" 1.5 | \n",
" 10 | \n",
" 7:1 | \n",
" β¬ | \n",
" Feb/2019 | \n",
" π’ | \n",
" Nov/2019 | \n",
" π | \n",
" Reddit outbound only | \n",
"
\n",
" \n",
" 91 | \n",
" GPT-1 | \n",
" OpenAI | \n",
" Hugging Face | \n",
" 0.1 | \n",
" NaN | \n",
" NaN | \n",
" π | \n",
" Jun/2018 | \n",
" π’ | \n",
" Jun/2018 | \n",
" π | \n",
" Books only | \n",
"
\n",
" \n",
" 92 | \n",
" BERT | \n",
" Google | \n",
" Hugging Face | \n",
" 0.3 | \n",
" 137 | \n",
" 457:1 | \n",
" π π | \n",
" Oct/2018 | \n",
" π’ | \n",
" Oct/2018 | \n",
" π | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Model Lab Selected \\nplaygrounds Parameters \\n(B) \\\n",
"88 Meena Google NaN 2.6 \n",
"89 RoBERTa Meta AI Hugging Face 0.355 \n",
"90 GPT-2 OpenAI Hugging Face 1.5 \n",
"91 GPT-1 OpenAI Hugging Face 0.1 \n",
"92 BERT Google Hugging Face 0.3 \n",
"\n",
" Tokens \\ntrained (B) Ratio T:P\\n(Chinchilla scaling) Training dataset \\\n",
"88 10000 3,847:1 π₯ π \n",
"89 2200 6,198:1 π π β¬ πΈ \n",
"90 10 7:1 β¬ \n",
"91 NaN NaN π \n",
"92 137 457:1 π π \n",
"\n",
" Announced\\nβΌ Public? Released Paper/\\nRepo \\\n",
"88 Jan/2020 π΄ Jan/2020 π \n",
"89 Jul/2019 π’ Jul/2019 π \n",
"90 Feb/2019 π’ Nov/2019 π \n",
"91 Jun/2018 π’ Jun/2018 π \n",
"92 Oct/2018 π’ Oct/2018 π \n",
"\n",
" Notes \n",
"88 Dialogue model. Trained 61B tokens for 164x ep... \n",
"89 See cite ROBERTA \n",
"90 Reddit outbound only \n",
"91 Books only \n",
"92 NaN "
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.tail()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"# |export\n",
"title = \"\"\"The Large Language Models Landscape
\"\"\"\n",
"description = \"\"\"Large Language Models (LLMs) today come in a variety architectures and capabilities. This interactive landscape provides a visual overview of the most important LLMs, including their training data, size, release date, and whether they are openly accessible or not. It also includes notes on each model to provide additional context. This landscape is derived from data compiled by Dr. Alan D. Thompson at [lifearchitect.ai](https://lifearchitect.ai).\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7862\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# |export\n",
"def value_func():\n",
" return df\n",
"\n",
"with gr.Blocks() as demo:\n",
" gr.Markdown(title)\n",
" gr.Markdown(description)\n",
" gr.DataFrame(value=value_func)\n",
"\n",
"demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Closing server running on port: 7862\n"
]
}
],
"source": [
"demo.close()"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"from nbdev.export import nb_export\n",
"\n",
"nb_export(\"app.ipynb\", lib_path=\".\", name=\"app\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "hf",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "66e5af1d4a3a75efffc7cd5a7f382675fc3ac06b0697676e06fa85c907378a99"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}