Spaces:
Runtime error
Runtime error
from pathlib import Path | |
from typing import List, Optional, Tuple | |
import gradio as gr | |
import numpy as np | |
import torch | |
from sudachipy import dictionary | |
from sudachipy import tokenizer as sudachi_tokenizer | |
from transformers import AutoModelForCausalLM, PreTrainedTokenizer, T5Tokenizer | |
model_dir = Path(__file__).parents[0] / "model" | |
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") | |
tokenizer = T5Tokenizer.from_pretrained(model_dir) | |
tokenizer.do_lower_case = True | |
trained_model = AutoModelForCausalLM.from_pretrained(model_dir) | |
trained_model.to(device) | |
# baseline model | |
baseline_model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt2-medium") | |
baseline_model.to(device) | |
sudachi_tokenizer_obj = dictionary.Dictionary().create() | |
mode = sudachi_tokenizer.Tokenizer.SplitMode.C | |
def sudachi_tokenize(input_text: str) -> List[str]: | |
morphemes = sudachi_tokenizer_obj.tokenize(input_text, mode) | |
return [morpheme.surface() for morpheme in morphemes] | |
def calc_offsets(tokens: List[str]) -> List[int]: | |
offsets = [0] | |
for token in tokens: | |
offsets.append(offsets[-1] + len(token)) | |
return offsets | |
def distribute_surprisals_to_characters( | |
tokens2surprisal: List[Tuple[str, float]] | |
) -> List[Tuple[str, float]]: | |
tokens2surprisal_by_character: List[Tuple[str, float]] = [] | |
for token, surprisal in tokens2surprisal: | |
token_len = len(token) | |
for character in token: | |
tokens2surprisal_by_character.append((character, surprisal / token_len)) | |
return tokens2surprisal_by_character | |
def calculate_surprisals_by_character( | |
input_text: str, model: AutoModelForCausalLM, tokenizer: PreTrainedTokenizer | |
) -> Tuple[float, List[Tuple[str, float]]]: | |
input_tokens = [ | |
token.replace("▁", "") | |
for token in tokenizer.tokenize(input_text) | |
if token != "▁" | |
] | |
input_ids = tokenizer.encode( | |
"<s>" + input_text, add_special_tokens=False, return_tensors="pt" | |
).to(device) | |
logits = model(input_ids)["logits"].squeeze(0) | |
surprisals = [] | |
for i in range(logits.shape[0] - 1): | |
if input_ids[0][i + 1] == 9: | |
continue | |
logit = logits[i] | |
prob = torch.softmax(logit, dim=0) | |
neg_logprob = -torch.log(prob) | |
surprisals.append(neg_logprob[input_ids[0][i + 1]].item()) | |
mean_surprisal = np.mean(surprisals) | |
tokens2surprisal: List[Tuple[str, float]] = [] | |
for token, surprisal in zip(input_tokens, surprisals): | |
tokens2surprisal.append((token, surprisal)) | |
char2surprisal = distribute_surprisals_to_characters(tokens2surprisal) | |
return mean_surprisal, char2surprisal | |
def aggregate_surprisals_by_offset( | |
char2surprisal: List[Tuple[str, float]], offsets: List[int] | |
) -> List[Tuple[str, float]]: | |
tokens2surprisal = [] | |
for i in range(len(offsets) - 1): | |
start = offsets[i] | |
end = offsets[i + 1] | |
surprisal = sum([surprisal for _, surprisal in char2surprisal[start:end]]) | |
token = "".join([char for char, _ in char2surprisal[start:end]]) | |
tokens2surprisal.append((token, surprisal)) | |
return tokens2surprisal | |
def highlight_token(token: str, score: float): | |
if score > 0: | |
html_color = "#%02X%02X%02X" % ( | |
255, | |
int(255 * (1 - score)), | |
int(255 * (1 - score)), | |
) | |
else: | |
html_color = "#%02X%02X%02X" % ( | |
int(255 * (1 + score)), | |
int(255 * (1 + score)), | |
255, | |
) | |
return '<span style="background-color: {}; color: black">{}</span>'.format( | |
html_color, token | |
) | |
def create_highlighted_text( | |
label: str, | |
tokens2scores: List[Tuple[str, float]], | |
mean_surprisal: Optional[float] = None, | |
): | |
if mean_surprisal is None: | |
highlighted_text = "<h2><b>" + label + "</b></h2>" | |
else: | |
highlighted_text = ( | |
"<h2><b>" + label + f"</b>(サプライザル平均値: {mean_surprisal:.3f})</h2>" | |
) | |
for token, score in tokens2scores: | |
highlighted_text += highlight_token(token, score) | |
return highlighted_text | |
def normalize_surprisals( | |
tokens2surprisal: List[Tuple[str, float]], log_scale: bool = False | |
) -> List[Tuple[str, float]]: | |
if log_scale: | |
surprisals = [np.log(surprisal) for _, surprisal in tokens2surprisal] | |
else: | |
surprisals = [surprisal for _, surprisal in tokens2surprisal] | |
min_surprisal = np.min(surprisals) | |
max_surprisal = np.max(surprisals) | |
surprisals = [ | |
(surprisal - min_surprisal) / (max_surprisal - min_surprisal) | |
for surprisal in surprisals | |
] | |
assert min(surprisals) >= 0 | |
assert max(surprisals) <= 1 | |
return [ | |
(token, surprisal) | |
for (token, _), surprisal in zip(tokens2surprisal, surprisals) | |
] | |
def calculate_surprisal_diff( | |
tokens2surprisal: List[Tuple[str, float]], | |
baseline_tokens2surprisal: List[Tuple[str, float]], | |
scale: float = 100.0, | |
): | |
diff_tokens2surprisal = [ | |
(token, (surprisal - baseline_surprisal) * 100) | |
for (token, surprisal), (_, baseline_surprisal) in zip( | |
tokens2surprisal, baseline_tokens2surprisal | |
) | |
] | |
return diff_tokens2surprisal | |
def main(input_text: str) -> Tuple[str, str, str]: | |
mean_surprisal, char2surprisal = calculate_surprisals_by_character( | |
input_text, trained_model, tokenizer | |
) | |
offsets = calc_offsets(sudachi_tokenize(input_text)) | |
tokens2surprisal = aggregate_surprisals_by_offset(char2surprisal, offsets) | |
tokens2surprisal = normalize_surprisals(tokens2surprisal) | |
highlighted_text = create_highlighted_text( | |
"学習後モデル", tokens2surprisal, mean_surprisal | |
) | |
( | |
baseline_mean_surprisal, | |
baseline_char2surprisal, | |
) = calculate_surprisals_by_character(input_text, baseline_model, tokenizer) | |
baseline_tokens2surprisal = aggregate_surprisals_by_offset( | |
baseline_char2surprisal, offsets | |
) | |
baseline_tokens2surprisal = normalize_surprisals(baseline_tokens2surprisal) | |
baseline_highlighted_text = create_highlighted_text( | |
"学習前モデル", baseline_tokens2surprisal, baseline_mean_surprisal | |
) | |
diff_tokens2surprisal = calculate_surprisal_diff( | |
tokens2surprisal, baseline_tokens2surprisal, 100.0 | |
) | |
diff_highlighted_text = create_highlighted_text( | |
"学習前後の差分", diff_tokens2surprisal, None | |
) | |
return ( | |
baseline_highlighted_text, | |
highlighted_text, | |
diff_highlighted_text, | |
) | |
if __name__ == "__main__": | |
demo = gr.Interface( | |
fn=main, | |
title="文章の読みやすさを自動評価するAI", | |
description="文章を入力すると、読みづらい表現は赤く、読みやすい表現は青くハイライトされて出力されます。", | |
show_label=True, | |
inputs=gr.Textbox( | |
lines=5, | |
label="文章", | |
placeholder="ここに文章を入力してください。", | |
), | |
outputs=[ | |
gr.HTML(label="学習前モデル", show_label=True), | |
gr.HTML(label="学習後モデル", show_label=True), | |
gr.HTML(label="学習前後の差分", show_label=True), | |
], | |
examples=[ | |
"太郎が二郎を殴った。", | |
"太郎が二郎に殴った。", | |
"サイエンスインパクトラボは、国立研究開発法人科学技術振興機構(JST)の「科学と社会」推進部が行う共創プログラムです。「先端の研究開発を行う研究者」と「社会課題解決に取り組むプレイヤー」が約3ヶ月に渡って共創活動を行います。", | |
"近年、ニューラル言語モデルが自然言語の統語知識をどれほど有しているかを、容認性判断課題を通して検証する研究が行われてきている。しかし、このような言語モデルの統語的評価を行うためのデータセットは、主に英語を中心とした欧米の諸言語を対象に構築されてきた。本研究では、既存のデータセットの問題点を克服しつつ、このようなデータセットが構築されてこなかった日本語を対象とした初めてのデータセットである JCoLA (JapaneseCorpus of Linguistic Acceptability) を構築した上で、それを用いた言語モデルの統語的評価を行った。", | |
], | |
) | |
demo.launch() | |