File size: 10,795 Bytes
3cad23b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5465b9
 
3cad23b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import json

import gradio as gr

from collections import UserList

from flow import full_flow

schema = {
  "input": {
    "type": "object",
    "properties": {
      "location": {
        "type": "string",
        "description": "The name of the location for which the weather forecast is requested."
      },
      "date": {
        "type": "string",
        "format": "date",
        "description": "The date for which the weather forecast is requested, in YYYY-MM-DD format."
      }
    },
    "required": [
      "location",
      "date"
    ]
  },
  "output": {
    "type": "object",
    "properties": {
      "temperature": {
        "type": "number",
        "description": "The forecasted temperature in degrees Celsius."
      },
      "condition": {
        "type": "string",
        "description": "A brief description of the weather condition (e.g., sunny, cloudy, rainy)."
      },
      "humidity": {
        "type": "number",
        "description": "The forecasted humidity percentage."
      },
      "wind_speed": {
        "type": "number",
        "description": "The forecasted wind speed in kilometers per hour."
      }
    },
    "required": [
      "temperature",
      "condition",
      "humidity",
      "wind_speed"
    ]
  },
  "description": "Alice requests a weather forecast for a specific location and date from Bob's weather service.",
  "examples": [
    {
      "location": "New York",
      "date": "2023-10-15"
    },
    {
      "location": "London",
      "date": "2023-11-01"
    }
  ],
  "tools": [
    {
      "name": "WeatherForecastAPI",
      "description": "An API that provides weather forecasts for a given location and date.",
      "input": {
        "type": "object",
        "properties": {
          "location": {
            "type": "string",
            "description": "The name of the location for which the weather forecast is requested."
          },
          "date": {
            "type": "string",
            "format": "date",
            "description": "The date for which the weather forecast is requested, in YYYY-MM-DD format."
          }
        },
        "required": [
          "location",
          "date"
        ]
      },
      "output": {
        "type": "object",
        "properties": {
          "temperature": {
            "type": "number",
            "description": "The forecasted temperature in degrees Celsius."
          },
          "condition": {
            "type": "string",
            "description": "A brief description of the weather condition (e.g., sunny, cloudy, rainy)."
          },
          "humidity": {
            "type": "number",
            "description": "The forecasted humidity percentage."
          },
          "wind_speed": {
            "type": "number",
            "description": "The forecasted wind speed in kilometers per hour."
          }
        },
        "required": [
          "temperature",
          "condition",
          "humidity",
          "wind_speed"
        ]
      },
      "dummy_outputs": [
        {
          "temperature": 18,
          "condition": "Sunny",
          "humidity": 55,
          "wind_speed": 10
        },
        {
          "temperature": 12,
          "condition": "Cloudy",
          "humidity": 80,
          "wind_speed": 15
        }
      ]
    }
  ]
}

SCHEMAS = {
    "weather_forecast": schema,
    "other": { "input": "PIPPO"}
}

def parse_raw_messages(messages_raw):
    messages_clean = []
    messages_agora = []

    for message in messages_raw:
        role = message['role']
        message_without_role = dict(message)
        del message_without_role['role']

        messages_agora.append({
            'role': role,
            'content': '```\n' + json.dumps(message_without_role, indent=2) + '\n```'
        })

        if message.get('status') == 'error':
            messages_clean.append({
                'role': role,
                'content': f"Error: {message['message']}"
            })
        else:
            messages_clean.append({
                'role': role,
                'content': message['body']
            })

    return messages_clean, messages_agora

def main():
    with gr.Blocks() as demo:
        gr.Markdown("### Agora Demo")
        gr.Markdown("We will create a new Agora channel and offer it to Alice as a tool.")

        chosen_task = gr.Dropdown(choices=list(SCHEMAS.keys()), label="Schema", value="weather_forecast")
        custom_task = gr.Checkbox(label="Custom Task")

        STATE_TRACKER = {}
        
        @gr.render(inputs=[chosen_task, custom_task])
        def render(chosen_task, custom_task):
            if STATE_TRACKER.get('chosen_task') != chosen_task:
                STATE_TRACKER['chosen_task'] = chosen_task
                for k, v in SCHEMAS[chosen_task].items():
                    if isinstance(v, str):
                        STATE_TRACKER[k] = v
                    else:
                        STATE_TRACKER[k] = json.dumps(v, indent=2)

            if custom_task:
                gr.Text(label="Description", value=STATE_TRACKER["description"], interactive=True).change(lambda x: STATE_TRACKER.update({'description': x}))
                gr.TextArea(label="Input Schema", value=STATE_TRACKER["input"], interactive=True).change(lambda x: STATE_TRACKER.update({'input': x}))
                gr.TextArea(label="Output Schema", value=STATE_TRACKER["output"], interactive=True).change(lambda x: STATE_TRACKER.update({'output': x}))
                gr.TextArea(label="Tools", value=STATE_TRACKER["tools"], interactive=True).change(lambda x: STATE_TRACKER.update({'tools': x}))
                gr.TextArea(label="Examples", value=STATE_TRACKER["examples"], interactive=True).change(lambda x: STATE_TRACKER.update({'examples': x}))

        model_options = [
            ('GPT 4o (Camel AI)', 'gpt-4o'),
            ('GPT 4o-mini (Camel AI)', 'gpt-4o-mini'),
            ('Claude 3 Sonnet (LangChain)', 'claude-3-sonnet'),
            ('Gemini 1.5 Pro (Google GenAI)', 'gemini-1.5-pro'),
            ('Llama3 405B (Sambanova + LangChain)', 'llama3-405b')
        ]

        fallback_image = ''

        images = {
            'gpt-4o': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/chatgpt-icon.png',
            'gpt-4o-mini': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/chatgpt-icon.png',
            'claude-3-5-sonnet-latest': 'https://play-lh.googleusercontent.com/4S1nfdKsH_1tJodkHrBHimqlCTE6qx6z22zpMyPaMc_Rlr1EdSFDI1I6UEVMnokG5zI',
            'claude-3-5-haiku-latest': 'https://play-lh.googleusercontent.com/4S1nfdKsH_1tJodkHrBHimqlCTE6qx6z22zpMyPaMc_Rlr1EdSFDI1I6UEVMnokG5zI',
            'gemini-1.5-pro': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/google-gemini-icon.png',
            'llama3-405b': 'https://www.designstub.com/png-resources/wp-content/uploads/2023/03/meta-icon-social-media-flat-graphic-vector-3-novem.png'
        }

        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                alice_model_dd = gr.Dropdown(label="Alice Model", choices=model_options, value="gpt-4o")
            with gr.Column(scale=1):
                bob_model_dd = gr.Dropdown(label="Bob Model", choices=model_options, value="gpt-4o")
        
        button = gr.Button('Start', elem_id='start_button')
        gr.Markdown('### Natural Language')

        @gr.render(inputs=[alice_model_dd, bob_model_dd])
        def render_with_images(alice_model, bob_model):
            avatar_images = [images.get(alice_model, fallback_image), images.get(bob_model, fallback_image)]
            chatbot_nl = gr.Chatbot(type="messages", avatar_images=avatar_images)

            with gr.Accordion(label="Raw Messages", open=False):
                chatbot_nl_raw = gr.Chatbot(type="messages", avatar_images=avatar_images)
        
            gr.Markdown('### Negotiation')
            chatbot_negotiation = gr.Chatbot(type="messages", avatar_images=avatar_images)

            gr.Markdown('### Protocol')
            protocol_result = gr.TextArea(interactive=False, label="Protocol")

            gr.Markdown('### Implementation')
            with gr.Row():
                with gr.Column(scale=1):
                    alice_implementation = gr.TextArea(interactive=False, label="Alice Implementation")
                with gr.Column(scale=1):
                    bob_implementation = gr.TextArea(interactive=False, label="Bob Implementation")

            gr.Markdown('### Structured Communication')
            structured_communication = gr.Chatbot(type="messages", avatar_images=avatar_images)
            
            with gr.Accordion(label="Raw Messages", open=False):
                structured_communication_raw = gr.Chatbot(type="messages", avatar_images=avatar_images)

            def respond(chosen_task, custom_task, alice_model, bob_model):
                yield gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False), \
                    None, None, None, None, None, None, None, None

                if custom_task:
                    schema = dict(STATE_TRACKER)
                    for k, v in schema.items():
                        if isinstance(v, str):
                            try:
                                schema[k] = json.loads(v)
                            except:
                                pass
                else:
                    schema = SCHEMAS[chosen_task]

                for nl_messages_raw, negotiation_messages, structured_messages_raw, protocol, alice_implementation, bob_implementation in full_flow(schema, alice_model, bob_model):
                    nl_messages_clean, nl_messages_agora = parse_raw_messages(nl_messages_raw)
                    structured_messages_clean, structured_messages_agora = parse_raw_messages(structured_messages_raw)

                    yield gr.update(), gr.update(), gr.update(), nl_messages_clean, nl_messages_agora, negotiation_messages, structured_messages_clean, structured_messages_agora, protocol, alice_implementation, bob_implementation

                #yield from full_flow(schema, alice_model, bob_model)
                yield gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()

            button.click(respond, [chosen_task, custom_task, alice_model_dd, bob_model_dd], [button, alice_model_dd, bob_model_dd, chatbot_nl, chatbot_nl_raw, chatbot_negotiation, structured_communication, structured_communication_raw, protocol_result, alice_implementation, bob_implementation])

    demo.launch()


if __name__ == '__main__':
    main()