Spaces:
Running
Running
File size: 10,795 Bytes
3cad23b e5465b9 3cad23b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import json
import gradio as gr
from collections import UserList
from flow import full_flow
schema = {
"input": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The name of the location for which the weather forecast is requested."
},
"date": {
"type": "string",
"format": "date",
"description": "The date for which the weather forecast is requested, in YYYY-MM-DD format."
}
},
"required": [
"location",
"date"
]
},
"output": {
"type": "object",
"properties": {
"temperature": {
"type": "number",
"description": "The forecasted temperature in degrees Celsius."
},
"condition": {
"type": "string",
"description": "A brief description of the weather condition (e.g., sunny, cloudy, rainy)."
},
"humidity": {
"type": "number",
"description": "The forecasted humidity percentage."
},
"wind_speed": {
"type": "number",
"description": "The forecasted wind speed in kilometers per hour."
}
},
"required": [
"temperature",
"condition",
"humidity",
"wind_speed"
]
},
"description": "Alice requests a weather forecast for a specific location and date from Bob's weather service.",
"examples": [
{
"location": "New York",
"date": "2023-10-15"
},
{
"location": "London",
"date": "2023-11-01"
}
],
"tools": [
{
"name": "WeatherForecastAPI",
"description": "An API that provides weather forecasts for a given location and date.",
"input": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The name of the location for which the weather forecast is requested."
},
"date": {
"type": "string",
"format": "date",
"description": "The date for which the weather forecast is requested, in YYYY-MM-DD format."
}
},
"required": [
"location",
"date"
]
},
"output": {
"type": "object",
"properties": {
"temperature": {
"type": "number",
"description": "The forecasted temperature in degrees Celsius."
},
"condition": {
"type": "string",
"description": "A brief description of the weather condition (e.g., sunny, cloudy, rainy)."
},
"humidity": {
"type": "number",
"description": "The forecasted humidity percentage."
},
"wind_speed": {
"type": "number",
"description": "The forecasted wind speed in kilometers per hour."
}
},
"required": [
"temperature",
"condition",
"humidity",
"wind_speed"
]
},
"dummy_outputs": [
{
"temperature": 18,
"condition": "Sunny",
"humidity": 55,
"wind_speed": 10
},
{
"temperature": 12,
"condition": "Cloudy",
"humidity": 80,
"wind_speed": 15
}
]
}
]
}
SCHEMAS = {
"weather_forecast": schema,
"other": { "input": "PIPPO"}
}
def parse_raw_messages(messages_raw):
messages_clean = []
messages_agora = []
for message in messages_raw:
role = message['role']
message_without_role = dict(message)
del message_without_role['role']
messages_agora.append({
'role': role,
'content': '```\n' + json.dumps(message_without_role, indent=2) + '\n```'
})
if message.get('status') == 'error':
messages_clean.append({
'role': role,
'content': f"Error: {message['message']}"
})
else:
messages_clean.append({
'role': role,
'content': message['body']
})
return messages_clean, messages_agora
def main():
with gr.Blocks() as demo:
gr.Markdown("### Agora Demo")
gr.Markdown("We will create a new Agora channel and offer it to Alice as a tool.")
chosen_task = gr.Dropdown(choices=list(SCHEMAS.keys()), label="Schema", value="weather_forecast")
custom_task = gr.Checkbox(label="Custom Task")
STATE_TRACKER = {}
@gr.render(inputs=[chosen_task, custom_task])
def render(chosen_task, custom_task):
if STATE_TRACKER.get('chosen_task') != chosen_task:
STATE_TRACKER['chosen_task'] = chosen_task
for k, v in SCHEMAS[chosen_task].items():
if isinstance(v, str):
STATE_TRACKER[k] = v
else:
STATE_TRACKER[k] = json.dumps(v, indent=2)
if custom_task:
gr.Text(label="Description", value=STATE_TRACKER["description"], interactive=True).change(lambda x: STATE_TRACKER.update({'description': x}))
gr.TextArea(label="Input Schema", value=STATE_TRACKER["input"], interactive=True).change(lambda x: STATE_TRACKER.update({'input': x}))
gr.TextArea(label="Output Schema", value=STATE_TRACKER["output"], interactive=True).change(lambda x: STATE_TRACKER.update({'output': x}))
gr.TextArea(label="Tools", value=STATE_TRACKER["tools"], interactive=True).change(lambda x: STATE_TRACKER.update({'tools': x}))
gr.TextArea(label="Examples", value=STATE_TRACKER["examples"], interactive=True).change(lambda x: STATE_TRACKER.update({'examples': x}))
model_options = [
('GPT 4o (Camel AI)', 'gpt-4o'),
('GPT 4o-mini (Camel AI)', 'gpt-4o-mini'),
('Claude 3 Sonnet (LangChain)', 'claude-3-sonnet'),
('Gemini 1.5 Pro (Google GenAI)', 'gemini-1.5-pro'),
('Llama3 405B (Sambanova + LangChain)', 'llama3-405b')
]
fallback_image = ''
images = {
'gpt-4o': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/chatgpt-icon.png',
'gpt-4o-mini': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/chatgpt-icon.png',
'claude-3-5-sonnet-latest': 'https://play-lh.googleusercontent.com/4S1nfdKsH_1tJodkHrBHimqlCTE6qx6z22zpMyPaMc_Rlr1EdSFDI1I6UEVMnokG5zI',
'claude-3-5-haiku-latest': 'https://play-lh.googleusercontent.com/4S1nfdKsH_1tJodkHrBHimqlCTE6qx6z22zpMyPaMc_Rlr1EdSFDI1I6UEVMnokG5zI',
'gemini-1.5-pro': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/google-gemini-icon.png',
'llama3-405b': 'https://www.designstub.com/png-resources/wp-content/uploads/2023/03/meta-icon-social-media-flat-graphic-vector-3-novem.png'
}
with gr.Row(equal_height=True):
with gr.Column(scale=1):
alice_model_dd = gr.Dropdown(label="Alice Model", choices=model_options, value="gpt-4o")
with gr.Column(scale=1):
bob_model_dd = gr.Dropdown(label="Bob Model", choices=model_options, value="gpt-4o")
button = gr.Button('Start', elem_id='start_button')
gr.Markdown('### Natural Language')
@gr.render(inputs=[alice_model_dd, bob_model_dd])
def render_with_images(alice_model, bob_model):
avatar_images = [images.get(alice_model, fallback_image), images.get(bob_model, fallback_image)]
chatbot_nl = gr.Chatbot(type="messages", avatar_images=avatar_images)
with gr.Accordion(label="Raw Messages", open=False):
chatbot_nl_raw = gr.Chatbot(type="messages", avatar_images=avatar_images)
gr.Markdown('### Negotiation')
chatbot_negotiation = gr.Chatbot(type="messages", avatar_images=avatar_images)
gr.Markdown('### Protocol')
protocol_result = gr.TextArea(interactive=False, label="Protocol")
gr.Markdown('### Implementation')
with gr.Row():
with gr.Column(scale=1):
alice_implementation = gr.TextArea(interactive=False, label="Alice Implementation")
with gr.Column(scale=1):
bob_implementation = gr.TextArea(interactive=False, label="Bob Implementation")
gr.Markdown('### Structured Communication')
structured_communication = gr.Chatbot(type="messages", avatar_images=avatar_images)
with gr.Accordion(label="Raw Messages", open=False):
structured_communication_raw = gr.Chatbot(type="messages", avatar_images=avatar_images)
def respond(chosen_task, custom_task, alice_model, bob_model):
yield gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False), \
None, None, None, None, None, None, None, None
if custom_task:
schema = dict(STATE_TRACKER)
for k, v in schema.items():
if isinstance(v, str):
try:
schema[k] = json.loads(v)
except:
pass
else:
schema = SCHEMAS[chosen_task]
for nl_messages_raw, negotiation_messages, structured_messages_raw, protocol, alice_implementation, bob_implementation in full_flow(schema, alice_model, bob_model):
nl_messages_clean, nl_messages_agora = parse_raw_messages(nl_messages_raw)
structured_messages_clean, structured_messages_agora = parse_raw_messages(structured_messages_raw)
yield gr.update(), gr.update(), gr.update(), nl_messages_clean, nl_messages_agora, negotiation_messages, structured_messages_clean, structured_messages_agora, protocol, alice_implementation, bob_implementation
#yield from full_flow(schema, alice_model, bob_model)
yield gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
button.click(respond, [chosen_task, custom_task, alice_model_dd, bob_model_dd], [button, alice_model_dd, bob_model_dd, chatbot_nl, chatbot_nl_raw, chatbot_negotiation, structured_communication, structured_communication_raw, protocol_result, alice_implementation, bob_implementation])
demo.launch()
if __name__ == '__main__':
main()
|