File size: 11,919 Bytes
3cad23b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
from abc import ABC, abstractmethod

import json

from google.generativeai.types import CallableFunctionDeclaration
import google.generativeai.types.content_types as content_types

from utils import add_params_and_annotations

class Parameter:
    def __init__(self, name, description, required):
        self.name = name
        self.description = description
        self.required = required

    def as_openai_info(self):
        pass

    def as_standard_api(self):
        pass

class StringParameter(Parameter):
    def __init__(self, name, description, required):
        super().__init__(name, description, required)

    def as_openai_info(self):
        return {
            "type": "string",
            "name": self.name,
            "description": self.description
        }

    def as_standard_api(self):
        return {
            "type": "string",
            "name": self.name,
            "description": self.description,
            "required": self.required
        }

    def as_natural_language(self):
        return f'{self.name} (string{", required" if self.required else ""}): {self.description}.'

    def as_documented_python(self):
        return f'{self.name} (str{", required" if self.required else ""}): {self.description}.'
    
    def as_gemini_tool(self):
        return {
            'type': 'string',
            'description': self.description
        }

    @staticmethod
    def from_standard_api(api_info):
        return StringParameter(api_info["name"], api_info["description"], api_info["required"])

class EnumParameter(Parameter):
    def __init__(self, name, description, values, required):
        super().__init__(name, description, required)
        self.values = values

    def as_openai_info(self):
        return {
            "type": "string",
            "description": self.description,
            "values": self.values
        }

    def as_standard_api(self):
        return {
            "type": "enum",
            "name": self.name,
            "description": self.description,
            "values": self.values,
            "required": self.required
        }
    
    def as_natural_language(self):
        return f'{self.name} (enum{", required" if self.required else ""}): {self.description}. Possible values: {", ".join(self.values)}'
    
    def as_documented_python(self):
        return f'{self.name} (str{", required" if self.required else ""}): {self.description}. Possible values: {", ".join(self.values)}'

    def as_gemini_tool(self):
        return {
            'description': self.description,
            'type': 'string',
            'enum': self.values
        }
    
    @staticmethod
    def from_standard_api(api_info):
        return EnumParameter(api_info["name"], api_info["description"], api_info["values"], api_info["required"])

class NumberParameter(Parameter):
    def __init__(self, name, description, required):
        super().__init__(name, description, required)

    def as_openai_info(self):
        return {
            "type": "number",
            "description": self.description
        }

    def as_standard_api(self):
        return {
            "type": "number",
            "name": self.name,
            "description": self.description,
            "required": self.required
        }

    def as_natural_language(self):
        return f'{self.name} (number): {self.description}'

    def as_documented_python(self):
        return f'{self.name} (number): {self.description}'
    
    def as_gemini_tool(self):
        return {
            'description': self.description,
            'type': 'number'
        }
    
class ArrayParameter(Parameter):
    def __init__(self, name, description, required, item_schema):
        super().__init__(name, description, required)
        self.item_schema = item_schema

    def as_openai_info(self):
        return {
            "type": "array",
            "description": self.description,
            "items": self.item_schema
        }

    def as_standard_api(self):
        return {
            "type": "array",
            "name": self.name,
            "description": self.description,
            "required": self.required,
            "item_schema": self.item_schema
        }

    def as_natural_language(self):
        return f'{self.name} (array): {self.description}. Each item should follow the JSON schema: {json.dumps(self.item_schema)}'

    def as_documented_python(self):
        return f'{self.name} (list): {self.description}. Each item should follow the JSON schema: {json.dumps(self.item_schema)}'
    
    def as_gemini_tool(self):
        return {
            'description': self.description,
            'type': 'array',
            'items': self.item_schema
        }

def parameter_from_openai_api(parameter_name, schema, required):
    if 'enum' in schema:
        return EnumParameter(parameter_name, schema['description'], schema['enum'], required)
    elif schema['type'] == 'string':
        return StringParameter(parameter_name, schema['description'], required)
    elif schema['type'] == 'number':
        return NumberParameter(parameter_name, schema['description'], required)
    elif schema['type'] == 'array':
        return ArrayParameter(parameter_name, schema['description'], required, schema['items'])
    else:
        raise ValueError(f'Unknown parameter type: {schema["type"]}')

class Tool:
    def __init__(self, name, description, parameters, function, output_schema=None):
        self.name = name
        self.description = description
        self.parameters = parameters
        self.function = function
        self.output_schema = output_schema
    
    def call_tool_for_toolformer(self, *args, **kwargs):
        print(f'Toolformer called tool {self.name} with args {args} and kwargs {kwargs}')
        # Unlike a call from a routine, this call catches exceptions and returns them as strings
        try:
            tool_reply = self.function(*args, **kwargs)
            print(f'Tool {self.name} returned: {tool_reply}')
            return tool_reply
        except Exception as e:
            print(f'Tool {self.name} failed with exception: {e}')
            return 'Tool call failed: ' + str(e)
    
    def as_openai_info(self):
        return {
            "type": "function",
            "function": {
                "name": self.name,
                "description": self.description,
                "parameters": {
                    "type" : "object",
                    "properties": {parameter.name : parameter.as_openai_info() for parameter in self.parameters},
                    "required": [parameter.name for parameter in self.parameters if parameter.required]
                }
            }
        }
    
    def as_gemini_tool(self) -> CallableFunctionDeclaration:
        if len(self.parameters) == 0:
            parameters = None
        else:
            parameters = {
                'type': 'object',
                'properties': {parameter.name: parameter.as_gemini_tool() for parameter in self.parameters},
                'required': [parameter.name for parameter in self.parameters if parameter.required]
            }
        return content_types.Tool([CallableFunctionDeclaration(
            name=self.name,
            description=self.description,
            parameters=parameters,
            function=self.call_tool_for_toolformer
        )])

    def as_llama_schema(self):
        schema = {
            'name': self.name,
            'description': self.description,
            'parameters': {parameter.name : parameter.as_openai_info() for parameter in self.parameters},
            'required': [parameter.name for parameter in self.parameters if parameter.required]
        }

        if self.output_schema is not None:
            schema['output_schema'] = self.output_schema
        
        return schema

    def as_natural_language(self):
        print('Converting to natural language')
        print('Number of parameters:', len(self.parameters))
        nl = f'Function {self.name}: {self.description}. Parameters:\n'
        
        if len(self.parameters) == 0:
            nl += 'No parameters.'
        else:
            for parameter in self.parameters:
                nl += '\t' + parameter.as_natural_language() + '\n'

        if self.output_schema is not None:
            nl += f'\Returns a dictionary with schema: {json.dumps(self.output_schema, indent=2)}'
        
        return nl

    def as_standard_api(self):
        return {
            "name": self.name,
            "description": self.description,
            "parameters": [parameter.as_standard_api() for parameter in self.parameters]
        }
    
    def as_documented_python(self):
        documented_python = f'Tool {self.name}:\n\n{self.description}\nParameters:\n'

        if len(self.parameters) == 0:
            documented_python += 'No parameters.'
        else:
            for parameter in self.parameters:
                documented_python += '\t' + parameter.as_documented_python() + '\n'
        
        if self.output_schema is not None:
            documented_python += f'\Returns a dictionary with schema: {json.dumps(self.output_schema, indent=2)}'

        return documented_python

    def as_executable_function(self):
        # Create an actual function that can be called
        def f(*args, **kwargs):
            print('Routine called tool', self.name, 'with args', args, 'and kwargs', kwargs)
            response = self.function(*args, **kwargs)
            print('Tool', self.name, 'returned:', response)
            return response
        
        return f
    
    def as_annotated_function(self):
        def wrapped_fn(*args, **kwargs):
            return self.call_tool_for_toolformer(*args, **kwargs)
        
        parsed_parameters = {}

        description = self.description

        for parameter_name, parameter_schema in self.as_openai_info()['function']['parameters']['properties'].items():
            if parameter_schema['type'] == 'string':
                parsed_parameters[parameter_name] = (str, parameter_schema['description'])
            elif parameter_schema['type'] == 'number':
                parsed_parameters[parameter_name] = (float, parameter_schema['description'])
            elif parameter_schema['type'] == 'object':
                parsed_parameters[parameter_name] = (dict, parameter_schema['description'])

                description += f'\n{parameter_name} has the schema:\n' + json.dumps(parameter_schema) + '\n'
            else:
                raise ValueError(f'Unknown parameter type: {parameter_schema["type"]}')
        
        return_type = type(None)

        if self.output_schema is not None:
            #description += '\nOutput schema:\n' + json.dumps(self.output_schema)

            if self.output_schema['type'] == 'string':
                return_type = str
            elif self.output_schema['type'] == 'number':
                return_type = float
            elif self.output_schema['type'] == 'object':
                return_type = dict
            else:
                raise ValueError(f'Unknown output type: {self.output_schema["type"]}')

        return add_params_and_annotations(
            self.name, description, parsed_parameters, return_type)(wrapped_fn)
    
    @staticmethod
    def from_openai_info(info, func):
        parameters = [parameter_from_openai_api(name, schema, name in info['function']['parameters']['required']) for name, schema in info['function']['parameters']['properties'].items()]
        return Tool(info['function']['name'], info['function']['description'], parameters, func)


class Conversation(ABC):
    @abstractmethod
    def chat(self, message, role='user', print_output=True):
        pass

class Toolformer(ABC):
    @abstractmethod
    def new_conversation(self, prompt, tools, category=None) -> Conversation:
        pass