Spaces:
Running
Running
File size: 11,919 Bytes
3cad23b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
from abc import ABC, abstractmethod
import json
from google.generativeai.types import CallableFunctionDeclaration
import google.generativeai.types.content_types as content_types
from utils import add_params_and_annotations
class Parameter:
def __init__(self, name, description, required):
self.name = name
self.description = description
self.required = required
def as_openai_info(self):
pass
def as_standard_api(self):
pass
class StringParameter(Parameter):
def __init__(self, name, description, required):
super().__init__(name, description, required)
def as_openai_info(self):
return {
"type": "string",
"name": self.name,
"description": self.description
}
def as_standard_api(self):
return {
"type": "string",
"name": self.name,
"description": self.description,
"required": self.required
}
def as_natural_language(self):
return f'{self.name} (string{", required" if self.required else ""}): {self.description}.'
def as_documented_python(self):
return f'{self.name} (str{", required" if self.required else ""}): {self.description}.'
def as_gemini_tool(self):
return {
'type': 'string',
'description': self.description
}
@staticmethod
def from_standard_api(api_info):
return StringParameter(api_info["name"], api_info["description"], api_info["required"])
class EnumParameter(Parameter):
def __init__(self, name, description, values, required):
super().__init__(name, description, required)
self.values = values
def as_openai_info(self):
return {
"type": "string",
"description": self.description,
"values": self.values
}
def as_standard_api(self):
return {
"type": "enum",
"name": self.name,
"description": self.description,
"values": self.values,
"required": self.required
}
def as_natural_language(self):
return f'{self.name} (enum{", required" if self.required else ""}): {self.description}. Possible values: {", ".join(self.values)}'
def as_documented_python(self):
return f'{self.name} (str{", required" if self.required else ""}): {self.description}. Possible values: {", ".join(self.values)}'
def as_gemini_tool(self):
return {
'description': self.description,
'type': 'string',
'enum': self.values
}
@staticmethod
def from_standard_api(api_info):
return EnumParameter(api_info["name"], api_info["description"], api_info["values"], api_info["required"])
class NumberParameter(Parameter):
def __init__(self, name, description, required):
super().__init__(name, description, required)
def as_openai_info(self):
return {
"type": "number",
"description": self.description
}
def as_standard_api(self):
return {
"type": "number",
"name": self.name,
"description": self.description,
"required": self.required
}
def as_natural_language(self):
return f'{self.name} (number): {self.description}'
def as_documented_python(self):
return f'{self.name} (number): {self.description}'
def as_gemini_tool(self):
return {
'description': self.description,
'type': 'number'
}
class ArrayParameter(Parameter):
def __init__(self, name, description, required, item_schema):
super().__init__(name, description, required)
self.item_schema = item_schema
def as_openai_info(self):
return {
"type": "array",
"description": self.description,
"items": self.item_schema
}
def as_standard_api(self):
return {
"type": "array",
"name": self.name,
"description": self.description,
"required": self.required,
"item_schema": self.item_schema
}
def as_natural_language(self):
return f'{self.name} (array): {self.description}. Each item should follow the JSON schema: {json.dumps(self.item_schema)}'
def as_documented_python(self):
return f'{self.name} (list): {self.description}. Each item should follow the JSON schema: {json.dumps(self.item_schema)}'
def as_gemini_tool(self):
return {
'description': self.description,
'type': 'array',
'items': self.item_schema
}
def parameter_from_openai_api(parameter_name, schema, required):
if 'enum' in schema:
return EnumParameter(parameter_name, schema['description'], schema['enum'], required)
elif schema['type'] == 'string':
return StringParameter(parameter_name, schema['description'], required)
elif schema['type'] == 'number':
return NumberParameter(parameter_name, schema['description'], required)
elif schema['type'] == 'array':
return ArrayParameter(parameter_name, schema['description'], required, schema['items'])
else:
raise ValueError(f'Unknown parameter type: {schema["type"]}')
class Tool:
def __init__(self, name, description, parameters, function, output_schema=None):
self.name = name
self.description = description
self.parameters = parameters
self.function = function
self.output_schema = output_schema
def call_tool_for_toolformer(self, *args, **kwargs):
print(f'Toolformer called tool {self.name} with args {args} and kwargs {kwargs}')
# Unlike a call from a routine, this call catches exceptions and returns them as strings
try:
tool_reply = self.function(*args, **kwargs)
print(f'Tool {self.name} returned: {tool_reply}')
return tool_reply
except Exception as e:
print(f'Tool {self.name} failed with exception: {e}')
return 'Tool call failed: ' + str(e)
def as_openai_info(self):
return {
"type": "function",
"function": {
"name": self.name,
"description": self.description,
"parameters": {
"type" : "object",
"properties": {parameter.name : parameter.as_openai_info() for parameter in self.parameters},
"required": [parameter.name for parameter in self.parameters if parameter.required]
}
}
}
def as_gemini_tool(self) -> CallableFunctionDeclaration:
if len(self.parameters) == 0:
parameters = None
else:
parameters = {
'type': 'object',
'properties': {parameter.name: parameter.as_gemini_tool() for parameter in self.parameters},
'required': [parameter.name for parameter in self.parameters if parameter.required]
}
return content_types.Tool([CallableFunctionDeclaration(
name=self.name,
description=self.description,
parameters=parameters,
function=self.call_tool_for_toolformer
)])
def as_llama_schema(self):
schema = {
'name': self.name,
'description': self.description,
'parameters': {parameter.name : parameter.as_openai_info() for parameter in self.parameters},
'required': [parameter.name for parameter in self.parameters if parameter.required]
}
if self.output_schema is not None:
schema['output_schema'] = self.output_schema
return schema
def as_natural_language(self):
print('Converting to natural language')
print('Number of parameters:', len(self.parameters))
nl = f'Function {self.name}: {self.description}. Parameters:\n'
if len(self.parameters) == 0:
nl += 'No parameters.'
else:
for parameter in self.parameters:
nl += '\t' + parameter.as_natural_language() + '\n'
if self.output_schema is not None:
nl += f'\Returns a dictionary with schema: {json.dumps(self.output_schema, indent=2)}'
return nl
def as_standard_api(self):
return {
"name": self.name,
"description": self.description,
"parameters": [parameter.as_standard_api() for parameter in self.parameters]
}
def as_documented_python(self):
documented_python = f'Tool {self.name}:\n\n{self.description}\nParameters:\n'
if len(self.parameters) == 0:
documented_python += 'No parameters.'
else:
for parameter in self.parameters:
documented_python += '\t' + parameter.as_documented_python() + '\n'
if self.output_schema is not None:
documented_python += f'\Returns a dictionary with schema: {json.dumps(self.output_schema, indent=2)}'
return documented_python
def as_executable_function(self):
# Create an actual function that can be called
def f(*args, **kwargs):
print('Routine called tool', self.name, 'with args', args, 'and kwargs', kwargs)
response = self.function(*args, **kwargs)
print('Tool', self.name, 'returned:', response)
return response
return f
def as_annotated_function(self):
def wrapped_fn(*args, **kwargs):
return self.call_tool_for_toolformer(*args, **kwargs)
parsed_parameters = {}
description = self.description
for parameter_name, parameter_schema in self.as_openai_info()['function']['parameters']['properties'].items():
if parameter_schema['type'] == 'string':
parsed_parameters[parameter_name] = (str, parameter_schema['description'])
elif parameter_schema['type'] == 'number':
parsed_parameters[parameter_name] = (float, parameter_schema['description'])
elif parameter_schema['type'] == 'object':
parsed_parameters[parameter_name] = (dict, parameter_schema['description'])
description += f'\n{parameter_name} has the schema:\n' + json.dumps(parameter_schema) + '\n'
else:
raise ValueError(f'Unknown parameter type: {parameter_schema["type"]}')
return_type = type(None)
if self.output_schema is not None:
#description += '\nOutput schema:\n' + json.dumps(self.output_schema)
if self.output_schema['type'] == 'string':
return_type = str
elif self.output_schema['type'] == 'number':
return_type = float
elif self.output_schema['type'] == 'object':
return_type = dict
else:
raise ValueError(f'Unknown output type: {self.output_schema["type"]}')
return add_params_and_annotations(
self.name, description, parsed_parameters, return_type)(wrapped_fn)
@staticmethod
def from_openai_info(info, func):
parameters = [parameter_from_openai_api(name, schema, name in info['function']['parameters']['required']) for name, schema in info['function']['parameters']['properties'].items()]
return Tool(info['function']['name'], info['function']['description'], parameters, func)
class Conversation(ABC):
@abstractmethod
def chat(self, message, role='user', print_output=True):
pass
class Toolformer(ABC):
@abstractmethod
def new_conversation(self, prompt, tools, category=None) -> Conversation:
pass
|