ahabb commited on
Commit
395e99f
·
verified ·
1 Parent(s): 59f0be6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -0
app.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline, Seq2SeqTrainer, Seq2SeqTrainingArguments
3
+
4
+ model_path = 'T5_samsum'
5
+
6
+ # Load the model
7
+ model = AutoModelForSequenceClassification.from_pretrained(model_path)
8
+
9
+ # Load the tokenizer
10
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
11
+
12
+ # Create the summarization pipeline
13
+ summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
14
+
15
+ # Define the summarization function
16
+ def summarize_dialogue(dialogue):
17
+ summary = summarizer(dialogue, max_length=150, min_length=50, do_sample=False)
18
+ return summary[0]['summary_text']
19
+
20
+ # Create the Gradio interface
21
+ iface = gr.Interface(
22
+ fn=summarize_dialogue,
23
+ inputs=gr.Textbox(lines=10, placeholder="Enter the dialogue here..."),
24
+ outputs="text",
25
+ title="Dialogue Summarizer",
26
+ description="Enter a dialogue and this app will generate a summary using a pre-trained model."
27
+ )
28
+
29
+ # Launch the app
30
+ iface.launch()