Spaces:
Sleeping
Sleeping
ahmad4raza
commited on
Commit
·
8acab6d
1
Parent(s):
bab4993
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
2 |
+
from langchain import PromptTemplate, LLMChain, OpenAI
|
3 |
+
import requests
|
4 |
+
import os
|
5 |
+
import io
|
6 |
+
from datasets import load_dataset
|
7 |
+
import torch
|
8 |
+
import soundfile as sf
|
9 |
+
import gradio as gr
|
10 |
+
from PIL import Image
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
from dotenv import load_dotenv, find_dotenv
|
14 |
+
load_dotenv(find_dotenv())
|
15 |
+
|
16 |
+
def handwriting_to_text(url):
|
17 |
+
model_1 = pipeline("image-to-text", model="microsoft/trocr-base-handwritten")
|
18 |
+
output_1 = model_1(url)
|
19 |
+
return output_1
|
20 |
+
|
21 |
+
def generate_story(scenario):
|
22 |
+
template = """
|
23 |
+
Consider yourself as the famous poet "William Shakespere";
|
24 |
+
You can generate a poem in Shakespeare's tone based on a single word, the poem should be no more than 4 lines in length;
|
25 |
+
|
26 |
+
CONTEXT: {scenario}
|
27 |
+
POEM:
|
28 |
+
"""
|
29 |
+
|
30 |
+
prompt = PromptTemplate(template=template, input_variables=["scenario"])
|
31 |
+
|
32 |
+
story_llm = LLMChain(llm=OpenAI(model_name="gpt-3.5-turbo", temperature=1), prompt=prompt, verbose=True)
|
33 |
+
story = story_llm.predict(scenario=scenario)
|
34 |
+
|
35 |
+
print(story)
|
36 |
+
return story
|
37 |
+
|
38 |
+
def recite_the_poem(content):
|
39 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
40 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
41 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
42 |
+
|
43 |
+
inputs = processor(text=content, return_tensors="pt")
|
44 |
+
|
45 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
46 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
47 |
+
|
48 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
49 |
+
|
50 |
+
sf.write("speech.wav", speech.numpy(), samplerate=16000)
|
51 |
+
|
52 |
+
return "speech.wav"
|
53 |
+
|
54 |
+
def recite_the_poem(content):
|
55 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
56 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
57 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
58 |
+
|
59 |
+
inputs = processor(text=content, return_tensors="pt")
|
60 |
+
|
61 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
62 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
63 |
+
|
64 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
65 |
+
|
66 |
+
sf.write("speech.wav", speech.numpy(), samplerate=16000)
|
67 |
+
|
68 |
+
with open("speech.wav", "rb") as audio_file:
|
69 |
+
audio_data = audio_file.read()
|
70 |
+
|
71 |
+
return audio_data
|
72 |
+
|
73 |
+
def main_model(image):
|
74 |
+
image = Image.fromarray(np.uint8(image))
|
75 |
+
image_path = "temp_image.png"
|
76 |
+
image.save(image_path)
|
77 |
+
text = handwriting_to_text(image_path)
|
78 |
+
poem = generate_story(text)
|
79 |
+
audio_data = recite_the_poem(poem)
|
80 |
+
return poem, audio_data
|
81 |
+
|
82 |
+
iface = gr.Interface(
|
83 |
+
fn=main_model,
|
84 |
+
inputs="image",
|
85 |
+
outputs=["text", "audio"],
|
86 |
+
title="Handwriting to Shakespearean Poem",
|
87 |
+
description="Upload an image containing handwritten text to generate a Shakespearean poem and play the recited poem.",
|
88 |
+
)
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
iface.launch(share=True)
|