import gradio as gr from huggingface_hub import InferenceClient import os from gtts import gTTS import whisper import io from tempfile import NamedTemporaryFile api = os.getenv("HF_API_TOKEN") client = InferenceClient("meta-llama/Meta-Llama-3.1-70B-Instruct", token=f"{api}") # Load Whisper model model = whisper.load_model("base") # or use 'small', 'medium', 'large', depending on your needs def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response def text_to_speech(text): tts = gTTS(text=text, lang='en') with NamedTemporaryFile(delete=True) as tmpfile: tts.save(tmpfile.name) with open(tmpfile.name, "rb") as f: return f.read() def speech_to_text(audio): # Load audio data into a temporary file with NamedTemporaryFile(delete=True, suffix=".wav") as tmpfile: tmpfile.write(audio) tmpfile.flush() # Transcribe audio with Whisper result = model.transcribe(tmpfile.name) return result['text'] def process_audio(audio, system_message, max_tokens, temperature, top_p): text = speech_to_text(audio) response_gen = respond( message=text, history=[], system_message=system_message, max_tokens=max_tokens, temperature=temperature, top_p=top_p, ) response_text = next(response_gen) audio_response = text_to_speech(response_text) return audio_response demo = gr.Interface( fn=process_audio, inputs=[ gr.Audio(source="microphone", type="bytes"), gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], outputs=gr.Audio(type="bytes"), ) if __name__ == "__main__": demo.launch()