import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM # Load the fine-tuned model and tokenizer tokenizer = AutoTokenizer.from_pretrained("ahmed-7124/dgptAW") model = AutoModelForCausalLM.from_pretrained("ahmed-7124/dgptAW") # Function to generate response from the model def doctor_consultant(query): # Encode the input query and generate the model's response inputs = tokenizer(query, return_tensors="pt") outputs = model.generate(inputs['input_ids'], max_length=200, num_return_sequences=1, no_repeat_ngram_size=2, top_p=0.95, temperature=0.7) # Decode the output and return the response response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Gradio Interface with gr.Blocks() as app: gr.Markdown("# Doctor Consultant Assistant") with gr.Row(): gr.Textbox(label="Ask the Doctor", placeholder="Enter your symptoms or question", lines=3, elem_id="input_text") with gr.Row(): gr.Button("Get Response", elem_id="response_button") with gr.Row(): gr.Textbox(label="Doctor's Response", elem_id="response_output", interactive=False) # Connect the function to the interface gr.Interface(fn=doctor_consultant, inputs="text", outputs="text").launch(share=True)