image2mesh / app.py
ahmetyaylalioglu's picture
Update app.py
4f082c1 verified
raw
history blame
1.33 kB
import shlex
import subprocess
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
subprocess.run(
shlex.split(
"pip install https://huggingface.co/spaces/dylanebert/LGM-mini/resolve/main/wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"
)
)
pipeline = DiffusionPipeline.from_pretrained(
"dylanebert/LGM-full",
custom_pipeline="dylanebert/LGM-full",
torch_dtype=torch.float16,
trust_remote_code=True,
).to("cuda")
@spaces.GPU
def run(image):
input_image = np.array(image, dtype=np.float32) / 255.0
splat = pipeline(
"", input_image, guidance_scale=5, num_inference_steps=30, elevation=0
)
splat_file = "/tmp/output.ply"
pipeline.save_ply(splat, splat_file)
return splat_file
demo = gr.Interface(
fn=run,
title="LGM Tiny",
description="An extremely simplified version of [LGM](https://huggingface.co/ashawkey/LGM). Intended as resource for the [ML for 3D Course](https://huggingface.co/learn/ml-for-3d-course/unit0/introduction).",
inputs="image",
outputs=gr.Model3D(),
examples=[
"https://huggingface.co/datasets/dylanebert/iso3d/resolve/main/jpg@512/a_cat_statue.jpg"
],
cache_examples=True,
allow_duplication=True,
)
demo.queue().launch()