ahujasherry18's picture
Create app.py
1471130 verified
import gradio as gr
from PIL import Image, ImageDraw
# Use a pipeline as a high-level helper
from transformers import pipeline
model_path = ("../Model/models--facebook--detr-resnet-50/snapshots"
"/1d5f47bd3bdd2c4bbfa585418ffe6da5028b4c0b")
object_detector = pipeline("object-detection", model="facebook/detr-resnet-50")
# object_detector = pipeline("object-detection", model=model_path)
def draw_bounding_boxes(image, detection_results):
"""
Draws bounding boxes on the provided image based on the detection results.
Parameters:
image (PIL.Image): The input image to be annotated.
detection_results (list): A list of dictionaries, each containing the detected object details.
Returns:
PIL.Image: The image with bounding boxes drawn around the detected objects.
"""
# Convert the input image to ImageDraw object to draw on it
draw = ImageDraw.Draw(image)
# Iterate through each detection result
for result in detection_results:
# Extract the bounding box coordinates and label
box = result['box']
label = result['label']
score = result['score']
# Define coordinates for the bounding box
xmin, ymin, xmax, ymax = box['xmin'], box['ymin'], box['xmax'], box['ymax']
# Draw the bounding box (with a red outline)
draw.rectangle([xmin, ymin, xmax, ymax], outline="red", width=3)
# Optionally, add label with score near the bounding box
text = f"{label} ({score * 100:.1f}%)"
draw.text((xmin, ymin - 10), text, fill="red")
return image
def detect_objects(image):
raw_image = image
output = object_detector(raw_image)
processed_image = draw_bounding_boxes(raw_image, output)
return processed_image
demo = gr.Interface(fn = detect_objects,
inputs=[gr.Image(label="Select Image",type="pil")],
outputs=[gr.Image(label="Summarized Text ",type="pil")],
title="@SherryAhuja Project : Object Detection",
description="This AI application will be used to Detect objects in an image.",)
demo.launch()