File size: 5,579 Bytes
dfde40a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import os
import importlib
class DefaultEngineConfig():
def __init__(self, exp_name='default', model='aott'):
model_cfg = importlib.import_module('configs.models.' +
model).ModelConfig()
self.__dict__.update(model_cfg.__dict__) # add model config
self.EXP_NAME = exp_name + '_' + self.MODEL_NAME
self.STAGE_NAME = 'YTB'
self.DATASETS = ['youtubevos']
self.DATA_WORKERS = 8
self.DATA_RANDOMCROP = (465,
465) if self.MODEL_ALIGN_CORNERS else (464,
464)
self.DATA_RANDOMFLIP = 0.5
self.DATA_MAX_CROP_STEPS = 10
self.DATA_SHORT_EDGE_LEN = 480
self.DATA_MIN_SCALE_FACTOR = 0.7
self.DATA_MAX_SCALE_FACTOR = 1.3
self.DATA_RANDOM_REVERSE_SEQ = True
self.DATA_SEQ_LEN = 5
self.DATA_DAVIS_REPEAT = 5
self.DATA_RANDOM_GAP_DAVIS = 12 # max frame interval between two sampled frames for DAVIS (24fps)
self.DATA_RANDOM_GAP_YTB = 3 # max frame interval between two sampled frames for YouTube-VOS (6fps)
self.DATA_DYNAMIC_MERGE_PROB = 0.3
self.PRETRAIN = True
self.PRETRAIN_FULL = False # if False, load encoder only
self.PRETRAIN_MODEL = './data_wd/pretrain_model/mobilenet_v2.pth'
# self.PRETRAIN_MODEL = './pretrain_models/mobilenet_v2-b0353104.pth'
self.TRAIN_TOTAL_STEPS = 100000
self.TRAIN_START_STEP = 0
self.TRAIN_WEIGHT_DECAY = 0.07
self.TRAIN_WEIGHT_DECAY_EXCLUSIVE = {
# 'encoder.': 0.01
}
self.TRAIN_WEIGHT_DECAY_EXEMPTION = [
'absolute_pos_embed', 'relative_position_bias_table',
'relative_emb_v', 'conv_out'
]
self.TRAIN_LR = 2e-4
self.TRAIN_LR_MIN = 2e-5 if 'mobilenetv2' in self.MODEL_ENCODER else 1e-5
self.TRAIN_LR_POWER = 0.9
self.TRAIN_LR_ENCODER_RATIO = 0.1
self.TRAIN_LR_WARM_UP_RATIO = 0.05
self.TRAIN_LR_COSINE_DECAY = False
self.TRAIN_LR_RESTART = 1
self.TRAIN_LR_UPDATE_STEP = 1
self.TRAIN_AUX_LOSS_WEIGHT = 1.0
self.TRAIN_AUX_LOSS_RATIO = 1.0
self.TRAIN_OPT = 'adamw'
self.TRAIN_SGD_MOMENTUM = 0.9
self.TRAIN_GPUS = 4
self.TRAIN_BATCH_SIZE = 16
self.TRAIN_TBLOG = False
self.TRAIN_TBLOG_STEP = 50
self.TRAIN_LOG_STEP = 20
self.TRAIN_IMG_LOG = True
self.TRAIN_TOP_K_PERCENT_PIXELS = 0.15
self.TRAIN_SEQ_TRAINING_FREEZE_PARAMS = ['patch_wise_id_bank']
self.TRAIN_SEQ_TRAINING_START_RATIO = 0.5
self.TRAIN_HARD_MINING_RATIO = 0.5
self.TRAIN_EMA_RATIO = 0.1
self.TRAIN_CLIP_GRAD_NORM = 5.
self.TRAIN_SAVE_STEP = 5000
self.TRAIN_MAX_KEEP_CKPT = 8
self.TRAIN_RESUME = False
self.TRAIN_RESUME_CKPT = None
self.TRAIN_RESUME_STEP = 0
self.TRAIN_AUTO_RESUME = True
self.TRAIN_DATASET_FULL_RESOLUTION = False
self.TRAIN_ENABLE_PREV_FRAME = False
self.TRAIN_ENCODER_FREEZE_AT = 2
self.TRAIN_LSTT_EMB_DROPOUT = 0.
self.TRAIN_LSTT_ID_DROPOUT = 0.
self.TRAIN_LSTT_DROPPATH = 0.1
self.TRAIN_LSTT_DROPPATH_SCALING = False
self.TRAIN_LSTT_DROPPATH_LST = False
self.TRAIN_LSTT_LT_DROPOUT = 0.
self.TRAIN_LSTT_ST_DROPOUT = 0.
self.TEST_GPU_ID = 0
self.TEST_GPU_NUM = 1
self.TEST_FRAME_LOG = False
self.TEST_DATASET = 'youtubevos'
self.TEST_DATASET_FULL_RESOLUTION = False
self.TEST_DATASET_SPLIT = 'val'
self.TEST_CKPT_PATH = None
# if "None", evaluate the latest checkpoint.
self.TEST_CKPT_STEP = None
self.TEST_FLIP = False
self.TEST_MULTISCALE = [1]
self.TEST_MAX_SHORT_EDGE = None
self.TEST_MAX_LONG_EDGE = 800 * 1.3
self.TEST_WORKERS = 4
# GPU distribution
self.DIST_ENABLE = True
self.DIST_BACKEND = "nccl" # "gloo"
self.DIST_URL = "tcp://127.0.0.1:13241"
self.DIST_START_GPU = 0
def init_dir(self):
self.DIR_DATA = '../VOS02/datasets'#'./datasets'
self.DIR_DAVIS = os.path.join(self.DIR_DATA, 'DAVIS')
self.DIR_YTB = os.path.join(self.DIR_DATA, 'YTB')
self.DIR_STATIC = os.path.join(self.DIR_DATA, 'Static')
self.DIR_ROOT = './'#'./data_wd/youtube_vos_jobs'
self.DIR_RESULT = os.path.join(self.DIR_ROOT, 'result', self.EXP_NAME,
self.STAGE_NAME)
self.DIR_CKPT = os.path.join(self.DIR_RESULT, 'ckpt')
self.DIR_EMA_CKPT = os.path.join(self.DIR_RESULT, 'ema_ckpt')
self.DIR_LOG = os.path.join(self.DIR_RESULT, 'log')
self.DIR_TB_LOG = os.path.join(self.DIR_RESULT, 'log', 'tensorboard')
# self.DIR_IMG_LOG = os.path.join(self.DIR_RESULT, 'log', 'img')
# self.DIR_EVALUATION = os.path.join(self.DIR_RESULT, 'eval')
self.DIR_IMG_LOG = './img_logs'
self.DIR_EVALUATION = './results'
for path in [
self.DIR_RESULT, self.DIR_CKPT, self.DIR_EMA_CKPT,
self.DIR_LOG, self.DIR_EVALUATION, self.DIR_IMG_LOG,
self.DIR_TB_LOG
]:
if not os.path.isdir(path):
try:
os.makedirs(path)
except Exception as inst:
print(inst)
print('Failed to make dir: {}.'.format(path))
|