File size: 5,579 Bytes
dfde40a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import importlib


class DefaultEngineConfig():
    def __init__(self, exp_name='default', model='aott'):
        model_cfg = importlib.import_module('configs.models.' +
                                            model).ModelConfig()
        self.__dict__.update(model_cfg.__dict__)  # add model config

        self.EXP_NAME = exp_name + '_' + self.MODEL_NAME

        self.STAGE_NAME = 'YTB'

        self.DATASETS = ['youtubevos']
        self.DATA_WORKERS = 8
        self.DATA_RANDOMCROP = (465,
                                465) if self.MODEL_ALIGN_CORNERS else (464,
                                                                       464)
        self.DATA_RANDOMFLIP = 0.5
        self.DATA_MAX_CROP_STEPS = 10
        self.DATA_SHORT_EDGE_LEN = 480
        self.DATA_MIN_SCALE_FACTOR = 0.7
        self.DATA_MAX_SCALE_FACTOR = 1.3
        self.DATA_RANDOM_REVERSE_SEQ = True
        self.DATA_SEQ_LEN = 5
        self.DATA_DAVIS_REPEAT = 5
        self.DATA_RANDOM_GAP_DAVIS = 12  # max frame interval between two sampled frames for DAVIS (24fps)
        self.DATA_RANDOM_GAP_YTB = 3  # max frame interval between two sampled frames for YouTube-VOS (6fps)
        self.DATA_DYNAMIC_MERGE_PROB = 0.3

        self.PRETRAIN = True
        self.PRETRAIN_FULL = False  # if False, load encoder only
        self.PRETRAIN_MODEL = './data_wd/pretrain_model/mobilenet_v2.pth'
        # self.PRETRAIN_MODEL = './pretrain_models/mobilenet_v2-b0353104.pth'

        self.TRAIN_TOTAL_STEPS = 100000
        self.TRAIN_START_STEP = 0
        self.TRAIN_WEIGHT_DECAY = 0.07
        self.TRAIN_WEIGHT_DECAY_EXCLUSIVE = {
            # 'encoder.': 0.01
        }
        self.TRAIN_WEIGHT_DECAY_EXEMPTION = [
            'absolute_pos_embed', 'relative_position_bias_table',
            'relative_emb_v', 'conv_out'
        ]
        self.TRAIN_LR = 2e-4
        self.TRAIN_LR_MIN = 2e-5 if 'mobilenetv2' in self.MODEL_ENCODER else 1e-5
        self.TRAIN_LR_POWER = 0.9
        self.TRAIN_LR_ENCODER_RATIO = 0.1
        self.TRAIN_LR_WARM_UP_RATIO = 0.05
        self.TRAIN_LR_COSINE_DECAY = False
        self.TRAIN_LR_RESTART = 1
        self.TRAIN_LR_UPDATE_STEP = 1
        self.TRAIN_AUX_LOSS_WEIGHT = 1.0
        self.TRAIN_AUX_LOSS_RATIO = 1.0
        self.TRAIN_OPT = 'adamw'
        self.TRAIN_SGD_MOMENTUM = 0.9
        self.TRAIN_GPUS = 4
        self.TRAIN_BATCH_SIZE = 16
        self.TRAIN_TBLOG = False
        self.TRAIN_TBLOG_STEP = 50
        self.TRAIN_LOG_STEP = 20
        self.TRAIN_IMG_LOG = True
        self.TRAIN_TOP_K_PERCENT_PIXELS = 0.15
        self.TRAIN_SEQ_TRAINING_FREEZE_PARAMS = ['patch_wise_id_bank']
        self.TRAIN_SEQ_TRAINING_START_RATIO = 0.5
        self.TRAIN_HARD_MINING_RATIO = 0.5
        self.TRAIN_EMA_RATIO = 0.1
        self.TRAIN_CLIP_GRAD_NORM = 5.
        self.TRAIN_SAVE_STEP = 5000
        self.TRAIN_MAX_KEEP_CKPT = 8
        self.TRAIN_RESUME = False
        self.TRAIN_RESUME_CKPT = None
        self.TRAIN_RESUME_STEP = 0
        self.TRAIN_AUTO_RESUME = True
        self.TRAIN_DATASET_FULL_RESOLUTION = False
        self.TRAIN_ENABLE_PREV_FRAME = False
        self.TRAIN_ENCODER_FREEZE_AT = 2
        self.TRAIN_LSTT_EMB_DROPOUT = 0.
        self.TRAIN_LSTT_ID_DROPOUT = 0.
        self.TRAIN_LSTT_DROPPATH = 0.1
        self.TRAIN_LSTT_DROPPATH_SCALING = False
        self.TRAIN_LSTT_DROPPATH_LST = False
        self.TRAIN_LSTT_LT_DROPOUT = 0.
        self.TRAIN_LSTT_ST_DROPOUT = 0.

        self.TEST_GPU_ID = 0
        self.TEST_GPU_NUM = 1
        self.TEST_FRAME_LOG = False
        self.TEST_DATASET = 'youtubevos'
        self.TEST_DATASET_FULL_RESOLUTION = False
        self.TEST_DATASET_SPLIT = 'val'
        self.TEST_CKPT_PATH = None
        # if "None", evaluate the latest checkpoint.
        self.TEST_CKPT_STEP = None
        self.TEST_FLIP = False
        self.TEST_MULTISCALE = [1]
        self.TEST_MAX_SHORT_EDGE = None
        self.TEST_MAX_LONG_EDGE = 800 * 1.3
        self.TEST_WORKERS = 4

        # GPU distribution
        self.DIST_ENABLE = True
        self.DIST_BACKEND = "nccl"  # "gloo"
        self.DIST_URL = "tcp://127.0.0.1:13241"
        self.DIST_START_GPU = 0

    def init_dir(self):
        self.DIR_DATA = '../VOS02/datasets'#'./datasets'
        self.DIR_DAVIS = os.path.join(self.DIR_DATA, 'DAVIS')
        self.DIR_YTB = os.path.join(self.DIR_DATA, 'YTB')
        self.DIR_STATIC = os.path.join(self.DIR_DATA, 'Static')

        self.DIR_ROOT = './'#'./data_wd/youtube_vos_jobs'

        self.DIR_RESULT = os.path.join(self.DIR_ROOT, 'result', self.EXP_NAME,
                                       self.STAGE_NAME)
        self.DIR_CKPT = os.path.join(self.DIR_RESULT, 'ckpt')
        self.DIR_EMA_CKPT = os.path.join(self.DIR_RESULT, 'ema_ckpt')
        self.DIR_LOG = os.path.join(self.DIR_RESULT, 'log')
        self.DIR_TB_LOG = os.path.join(self.DIR_RESULT, 'log', 'tensorboard')
        # self.DIR_IMG_LOG = os.path.join(self.DIR_RESULT, 'log', 'img')
        # self.DIR_EVALUATION = os.path.join(self.DIR_RESULT, 'eval')
        self.DIR_IMG_LOG = './img_logs'
        self.DIR_EVALUATION = './results'

        for path in [
                self.DIR_RESULT, self.DIR_CKPT, self.DIR_EMA_CKPT,
                self.DIR_LOG, self.DIR_EVALUATION, self.DIR_IMG_LOG,
                self.DIR_TB_LOG
        ]:
            if not os.path.isdir(path):
                try:
                    os.makedirs(path)
                except Exception as inst:
                    print(inst)
                    print('Failed to make dir: {}.'.format(path))