File size: 6,200 Bytes
dfde40a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
import os
import shutil
import numpy as np


def load_network_and_optimizer(net, opt, pretrained_dir, gpu, scaler=None):
    pretrained = torch.load(pretrained_dir,
                            map_location=torch.device("cuda:" + str(gpu)))
    pretrained_dict = pretrained['state_dict']
    model_dict = net.state_dict()
    pretrained_dict_update = {}
    pretrained_dict_remove = []
    for k, v in pretrained_dict.items():
        if k in model_dict:
            pretrained_dict_update[k] = v
        elif k[:7] == 'module.':
            if k[7:] in model_dict:
                pretrained_dict_update[k[7:]] = v
        else:
            pretrained_dict_remove.append(k)
    model_dict.update(pretrained_dict_update)
    net.load_state_dict(model_dict)
    opt.load_state_dict(pretrained['optimizer'])
    if scaler is not None and 'scaler' in pretrained.keys():
        scaler.load_state_dict(pretrained['scaler'])
    del (pretrained)
    return net.cuda(gpu), opt, pretrained_dict_remove


def load_network_and_optimizer_v2(net, opt, pretrained_dir, gpu, scaler=None):
    pretrained = torch.load(pretrained_dir,
                            map_location=torch.device("cuda:" + str(gpu)))
    # load model
    pretrained_dict = pretrained['state_dict']
    model_dict = net.state_dict()
    pretrained_dict_update = {}
    pretrained_dict_remove = []
    for k, v in pretrained_dict.items():
        if k in model_dict:
            pretrained_dict_update[k] = v
        elif k[:7] == 'module.':
            if k[7:] in model_dict:
                pretrained_dict_update[k[7:]] = v
        else:
            pretrained_dict_remove.append(k)
    model_dict.update(pretrained_dict_update)
    net.load_state_dict(model_dict)

    # load optimizer
    opt_dict = opt.state_dict()
    all_params = {
        param_group['name']: param_group['params'][0]
        for param_group in opt_dict['param_groups']
    }
    pretrained_opt_dict = {'state': {}, 'param_groups': []}
    for idx in range(len(pretrained['optimizer']['param_groups'])):
        param_group = pretrained['optimizer']['param_groups'][idx]
        if param_group['name'] in all_params.keys():
            pretrained_opt_dict['state'][all_params[
                param_group['name']]] = pretrained['optimizer']['state'][
                    param_group['params'][0]]
            param_group['params'][0] = all_params[param_group['name']]
            pretrained_opt_dict['param_groups'].append(param_group)

    opt_dict.update(pretrained_opt_dict)
    opt.load_state_dict(opt_dict)

    # load scaler
    if scaler is not None and 'scaler' in pretrained.keys():
        scaler.load_state_dict(pretrained['scaler'])
    del (pretrained)
    return net.cuda(gpu), opt, pretrained_dict_remove


def load_network(net, pretrained_dir, gpu):
    pretrained = torch.load(pretrained_dir,
                            map_location=torch.device("cuda:" + str(gpu)))
    if 'state_dict' in pretrained.keys():
        pretrained_dict = pretrained['state_dict']
    elif 'model' in pretrained.keys():
        pretrained_dict = pretrained['model']
    else:
        pretrained_dict = pretrained
    model_dict = net.state_dict()
    pretrained_dict_update = {}
    pretrained_dict_remove = []
    for k, v in pretrained_dict.items():
        if k in model_dict:
            pretrained_dict_update[k] = v
        elif k[:7] == 'module.':
            if k[7:] in model_dict:
                pretrained_dict_update[k[7:]] = v
        else:
            pretrained_dict_remove.append(k)
    model_dict.update(pretrained_dict_update)
    net.load_state_dict(model_dict)
    del (pretrained)
    return net.cuda(gpu), pretrained_dict_remove


def save_network(net,
                 opt,
                 step,
                 save_path,
                 max_keep=8,
                 backup_dir='./saved_models',
                 scaler=None):
    ckpt = {'state_dict': net.state_dict(), 'optimizer': opt.state_dict()}
    if scaler is not None:
        ckpt['scaler'] = scaler.state_dict()

    try:
        if not os.path.exists(save_path):
            os.makedirs(save_path)
        save_file = 'save_step_%s.pth' % (step)
        save_dir = os.path.join(save_path, save_file)
        torch.save(ckpt, save_dir)
    except:
        save_path = backup_dir
        if not os.path.exists(save_path):
            os.makedirs(save_path)
        save_file = 'save_step_%s.pth' % (step)
        save_dir = os.path.join(save_path, save_file)
        torch.save(ckpt, save_dir)

    all_ckpt = os.listdir(save_path)
    if len(all_ckpt) > max_keep:
        all_step = []
        for ckpt_name in all_ckpt:
            step = int(ckpt_name.split('_')[-1].split('.')[0])
            all_step.append(step)
        all_step = list(np.sort(all_step))[:-max_keep]
        for step in all_step:
            ckpt_path = os.path.join(save_path, 'save_step_%s.pth' % (step))
            os.system('rm {}'.format(ckpt_path))


def cp_ckpt(remote_dir="data_wd/youtube_vos_jobs/result", curr_dir="backup"):
    exps = os.listdir(curr_dir)
    for exp in exps:
        exp_dir = os.path.join(curr_dir, exp)
        stages = os.listdir(exp_dir)
        for stage in stages:
            stage_dir = os.path.join(exp_dir, stage)
            finals = ["ema_ckpt", "ckpt"]
            for final in finals:
                final_dir = os.path.join(stage_dir, final)
                ckpts = os.listdir(final_dir)
                for ckpt in ckpts:
                    if '.pth' not in ckpt:
                        continue
                    curr_ckpt_path = os.path.join(final_dir, ckpt)
                    remote_ckpt_path = os.path.join(remote_dir, exp, stage,
                                                    final, ckpt)
                    if os.path.exists(remote_ckpt_path):
                        os.system('rm {}'.format(remote_ckpt_path))
                    try:
                        shutil.copy(curr_ckpt_path, remote_ckpt_path)
                        print("Copy {} to {}.".format(curr_ckpt_path,
                                                      remote_ckpt_path))
                    except OSError as Inst:
                        return