File size: 6,200 Bytes
dfde40a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import torch
import os
import shutil
import numpy as np
def load_network_and_optimizer(net, opt, pretrained_dir, gpu, scaler=None):
pretrained = torch.load(pretrained_dir,
map_location=torch.device("cuda:" + str(gpu)))
pretrained_dict = pretrained['state_dict']
model_dict = net.state_dict()
pretrained_dict_update = {}
pretrained_dict_remove = []
for k, v in pretrained_dict.items():
if k in model_dict:
pretrained_dict_update[k] = v
elif k[:7] == 'module.':
if k[7:] in model_dict:
pretrained_dict_update[k[7:]] = v
else:
pretrained_dict_remove.append(k)
model_dict.update(pretrained_dict_update)
net.load_state_dict(model_dict)
opt.load_state_dict(pretrained['optimizer'])
if scaler is not None and 'scaler' in pretrained.keys():
scaler.load_state_dict(pretrained['scaler'])
del (pretrained)
return net.cuda(gpu), opt, pretrained_dict_remove
def load_network_and_optimizer_v2(net, opt, pretrained_dir, gpu, scaler=None):
pretrained = torch.load(pretrained_dir,
map_location=torch.device("cuda:" + str(gpu)))
# load model
pretrained_dict = pretrained['state_dict']
model_dict = net.state_dict()
pretrained_dict_update = {}
pretrained_dict_remove = []
for k, v in pretrained_dict.items():
if k in model_dict:
pretrained_dict_update[k] = v
elif k[:7] == 'module.':
if k[7:] in model_dict:
pretrained_dict_update[k[7:]] = v
else:
pretrained_dict_remove.append(k)
model_dict.update(pretrained_dict_update)
net.load_state_dict(model_dict)
# load optimizer
opt_dict = opt.state_dict()
all_params = {
param_group['name']: param_group['params'][0]
for param_group in opt_dict['param_groups']
}
pretrained_opt_dict = {'state': {}, 'param_groups': []}
for idx in range(len(pretrained['optimizer']['param_groups'])):
param_group = pretrained['optimizer']['param_groups'][idx]
if param_group['name'] in all_params.keys():
pretrained_opt_dict['state'][all_params[
param_group['name']]] = pretrained['optimizer']['state'][
param_group['params'][0]]
param_group['params'][0] = all_params[param_group['name']]
pretrained_opt_dict['param_groups'].append(param_group)
opt_dict.update(pretrained_opt_dict)
opt.load_state_dict(opt_dict)
# load scaler
if scaler is not None and 'scaler' in pretrained.keys():
scaler.load_state_dict(pretrained['scaler'])
del (pretrained)
return net.cuda(gpu), opt, pretrained_dict_remove
def load_network(net, pretrained_dir, gpu):
pretrained = torch.load(pretrained_dir,
map_location=torch.device("cuda:" + str(gpu)))
if 'state_dict' in pretrained.keys():
pretrained_dict = pretrained['state_dict']
elif 'model' in pretrained.keys():
pretrained_dict = pretrained['model']
else:
pretrained_dict = pretrained
model_dict = net.state_dict()
pretrained_dict_update = {}
pretrained_dict_remove = []
for k, v in pretrained_dict.items():
if k in model_dict:
pretrained_dict_update[k] = v
elif k[:7] == 'module.':
if k[7:] in model_dict:
pretrained_dict_update[k[7:]] = v
else:
pretrained_dict_remove.append(k)
model_dict.update(pretrained_dict_update)
net.load_state_dict(model_dict)
del (pretrained)
return net.cuda(gpu), pretrained_dict_remove
def save_network(net,
opt,
step,
save_path,
max_keep=8,
backup_dir='./saved_models',
scaler=None):
ckpt = {'state_dict': net.state_dict(), 'optimizer': opt.state_dict()}
if scaler is not None:
ckpt['scaler'] = scaler.state_dict()
try:
if not os.path.exists(save_path):
os.makedirs(save_path)
save_file = 'save_step_%s.pth' % (step)
save_dir = os.path.join(save_path, save_file)
torch.save(ckpt, save_dir)
except:
save_path = backup_dir
if not os.path.exists(save_path):
os.makedirs(save_path)
save_file = 'save_step_%s.pth' % (step)
save_dir = os.path.join(save_path, save_file)
torch.save(ckpt, save_dir)
all_ckpt = os.listdir(save_path)
if len(all_ckpt) > max_keep:
all_step = []
for ckpt_name in all_ckpt:
step = int(ckpt_name.split('_')[-1].split('.')[0])
all_step.append(step)
all_step = list(np.sort(all_step))[:-max_keep]
for step in all_step:
ckpt_path = os.path.join(save_path, 'save_step_%s.pth' % (step))
os.system('rm {}'.format(ckpt_path))
def cp_ckpt(remote_dir="data_wd/youtube_vos_jobs/result", curr_dir="backup"):
exps = os.listdir(curr_dir)
for exp in exps:
exp_dir = os.path.join(curr_dir, exp)
stages = os.listdir(exp_dir)
for stage in stages:
stage_dir = os.path.join(exp_dir, stage)
finals = ["ema_ckpt", "ckpt"]
for final in finals:
final_dir = os.path.join(stage_dir, final)
ckpts = os.listdir(final_dir)
for ckpt in ckpts:
if '.pth' not in ckpt:
continue
curr_ckpt_path = os.path.join(final_dir, ckpt)
remote_ckpt_path = os.path.join(remote_dir, exp, stage,
final, ckpt)
if os.path.exists(remote_ckpt_path):
os.system('rm {}'.format(remote_ckpt_path))
try:
shutil.copy(curr_ckpt_path, remote_ckpt_path)
print("Copy {} to {}.".format(curr_ckpt_path,
remote_ckpt_path))
except OSError as Inst:
return
|