SAM_Track / aot /dataloaders /image_transforms.py
aikenml's picture
Upload folder using huggingface_hub
dfde40a
import math
import warnings
import random
import numbers
import numpy as np
from PIL import Image, ImageFilter
from collections.abc import Sequence
import torch
import torchvision.transforms.functional as TF
_pil_interpolation_to_str = {
Image.NEAREST: 'PIL.Image.NEAREST',
Image.BILINEAR: 'PIL.Image.BILINEAR',
Image.BICUBIC: 'PIL.Image.BICUBIC',
Image.LANCZOS: 'PIL.Image.LANCZOS',
Image.HAMMING: 'PIL.Image.HAMMING',
Image.BOX: 'PIL.Image.BOX',
}
def _get_image_size(img):
if TF._is_pil_image(img):
return img.size
elif isinstance(img, torch.Tensor) and img.dim() > 2:
return img.shape[-2:][::-1]
else:
raise TypeError("Unexpected type {}".format(type(img)))
class RandomHorizontalFlip(object):
"""Horizontal flip the given PIL Image randomly with a given probability.
Args:
p (float): probability of the image being flipped. Default value is 0.5
"""
def __init__(self, p=0.5):
self.p = p
def __call__(self, img, mask):
"""
Args:
img (PIL Image): Image to be flipped.
Returns:
PIL Image: Randomly flipped image.
"""
if random.random() < self.p:
img = TF.hflip(img)
mask = TF.hflip(mask)
return img, mask
def __repr__(self):
return self.__class__.__name__ + '(p={})'.format(self.p)
class RandomVerticalFlip(object):
"""Vertical flip the given PIL Image randomly with a given probability.
Args:
p (float): probability of the image being flipped. Default value is 0.5
"""
def __init__(self, p=0.5):
self.p = p
def __call__(self, img, mask):
"""
Args:
img (PIL Image): Image to be flipped.
Returns:
PIL Image: Randomly flipped image.
"""
if random.random() < self.p:
img = TF.vflip(img)
mask = TF.vflip(mask)
return img, mask
def __repr__(self):
return self.__class__.__name__ + '(p={})'.format(self.p)
class GaussianBlur(object):
"""Gaussian blur augmentation from SimCLR: https://arxiv.org/abs/2002.05709"""
def __init__(self, sigma=[.1, 2.]):
self.sigma = sigma
def __call__(self, x):
sigma = random.uniform(self.sigma[0], self.sigma[1])
x = x.filter(ImageFilter.GaussianBlur(radius=sigma))
return x
class RandomAffine(object):
"""Random affine transformation of the image keeping center invariant
Args:
degrees (sequence or float or int): Range of degrees to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees). Set to 0 to deactivate rotations.
translate (tuple, optional): tuple of maximum absolute fraction for horizontal
and vertical translations. For example translate=(a, b), then horizontal shift
is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
randomly sampled from the range a <= scale <= b. Will keep original scale by default.
shear (sequence or float or int, optional): Range of degrees to select from.
If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
will be apllied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the
range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values,
a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
Will not apply shear by default
resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
An optional resampling filter. See `filters`_ for more information.
If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
fillcolor (tuple or int): Optional fill color (Tuple for RGB Image And int for grayscale) for the area
outside the transform in the output image.(Pillow>=5.0.0)
.. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters
"""
def __init__(self,
degrees,
translate=None,
scale=None,
shear=None,
resample=False,
fillcolor=0):
if isinstance(degrees, numbers.Number):
if degrees < 0:
raise ValueError(
"If degrees is a single number, it must be positive.")
self.degrees = (-degrees, degrees)
else:
assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
"degrees should be a list or tuple and it must be of length 2."
self.degrees = degrees
if translate is not None:
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
"translate should be a list or tuple and it must be of length 2."
for t in translate:
if not (0.0 <= t <= 1.0):
raise ValueError(
"translation values should be between 0 and 1")
self.translate = translate
if scale is not None:
assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
"scale should be a list or tuple and it must be of length 2."
for s in scale:
if s <= 0:
raise ValueError("scale values should be positive")
self.scale = scale
if shear is not None:
if isinstance(shear, numbers.Number):
if shear < 0:
raise ValueError(
"If shear is a single number, it must be positive.")
self.shear = (-shear, shear)
else:
assert isinstance(shear, (tuple, list)) and \
(len(shear) == 2 or len(shear) == 4), \
"shear should be a list or tuple and it must be of length 2 or 4."
# X-Axis shear with [min, max]
if len(shear) == 2:
self.shear = [shear[0], shear[1], 0., 0.]
elif len(shear) == 4:
self.shear = [s for s in shear]
else:
self.shear = shear
self.resample = resample
self.fillcolor = fillcolor
@staticmethod
def get_params(degrees, translate, scale_ranges, shears, img_size):
"""Get parameters for affine transformation
Returns:
sequence: params to be passed to the affine transformation
"""
angle = random.uniform(degrees[0], degrees[1])
if translate is not None:
max_dx = translate[0] * img_size[0]
max_dy = translate[1] * img_size[1]
translations = (np.round(random.uniform(-max_dx, max_dx)),
np.round(random.uniform(-max_dy, max_dy)))
else:
translations = (0, 0)
if scale_ranges is not None:
scale = random.uniform(scale_ranges[0], scale_ranges[1])
else:
scale = 1.0
if shears is not None:
if len(shears) == 2:
shear = [random.uniform(shears[0], shears[1]), 0.]
elif len(shears) == 4:
shear = [
random.uniform(shears[0], shears[1]),
random.uniform(shears[2], shears[3])
]
else:
shear = 0.0
return angle, translations, scale, shear
def __call__(self, img, mask):
"""
img (PIL Image): Image to be transformed.
Returns:
PIL Image: Affine transformed image.
"""
ret = self.get_params(self.degrees, self.translate, self.scale,
self.shear, img.size)
img = TF.affine(img,
*ret,
resample=self.resample,
fillcolor=self.fillcolor)
mask = TF.affine(mask, *ret, resample=Image.NEAREST, fillcolor=0)
return img, mask
def __repr__(self):
s = '{name}(degrees={degrees}'
if self.translate is not None:
s += ', translate={translate}'
if self.scale is not None:
s += ', scale={scale}'
if self.shear is not None:
s += ', shear={shear}'
if self.resample > 0:
s += ', resample={resample}'
if self.fillcolor != 0:
s += ', fillcolor={fillcolor}'
s += ')'
d = dict(self.__dict__)
d['resample'] = _pil_interpolation_to_str[d['resample']]
return s.format(name=self.__class__.__name__, **d)
class RandomCrop(object):
"""Crop the given PIL Image at a random location.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
padding (int or sequence, optional): Optional padding on each border
of the image. Default is None, i.e no padding. If a sequence of length
4 is provided, it is used to pad left, top, right, bottom borders
respectively. If a sequence of length 2 is provided, it is used to
pad left/right, top/bottom borders, respectively.
pad_if_needed (boolean): It will pad the image if smaller than the
desired size to avoid raising an exception. Since cropping is done
after padding, the padding seems to be done at a random offset.
fill: Pixel fill value for constant fill. Default is 0. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value on the edge of the image
- reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
"""
def __init__(self,
size,
padding=None,
pad_if_needed=False,
fill=0,
padding_mode='constant'):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.padding = padding
self.pad_if_needed = pad_if_needed
self.fill = fill
self.padding_mode = padding_mode
@staticmethod
def get_params(img, output_size):
"""Get parameters for ``crop`` for a random crop.
Args:
img (PIL Image): Image to be cropped.
output_size (tuple): Expected output size of the crop.
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
"""
w, h = _get_image_size(img)
th, tw = output_size
if w == tw and h == th:
return 0, 0, h, w
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
return i, j, th, tw
def __call__(self, img, mask):
"""
Args:
img (PIL Image): Image to be cropped.
Returns:
PIL Image: Cropped image.
"""
# if self.padding is not None:
# img = TF.pad(img, self.padding, self.fill, self.padding_mode)
#
# # pad the width if needed
# if self.pad_if_needed and img.size[0] < self.size[1]:
# img = TF.pad(img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode)
# # pad the height if needed
# if self.pad_if_needed and img.size[1] < self.size[0]:
# img = TF.pad(img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode)
i, j, h, w = self.get_params(img, self.size)
img = TF.crop(img, i, j, h, w)
mask = TF.crop(mask, i, j, h, w)
return img, mask
def __repr__(self):
return self.__class__.__name__ + '(size={0}, padding={1})'.format(
self.size, self.padding)
class RandomResizedCrop(object):
"""Crop the given PIL Image to random size and aspect ratio.
A crop of random size (default: of 0.08 to 1.0) of the original size and a random
aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
is finally resized to given size.
This is popularly used to train the Inception networks.
Args:
size: expected output size of each edge
scale: range of size of the origin size cropped
ratio: range of aspect ratio of the origin aspect ratio cropped
interpolation: Default: PIL.Image.BILINEAR
"""
def __init__(self,
size,
scale=(0.08, 1.0),
ratio=(3. / 4., 4. / 3.),
interpolation=Image.BILINEAR):
if isinstance(size, (tuple, list)):
self.size = size
else:
self.size = (size, size)
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
warnings.warn("range should be of kind (min, max)")
self.interpolation = interpolation
self.scale = scale
self.ratio = ratio
@staticmethod
def get_params(img, scale, ratio):
"""Get parameters for ``crop`` for a random sized crop.
Args:
img (PIL Image): Image to be cropped.
scale (tuple): range of size of the origin size cropped
ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for a random
sized crop.
"""
width, height = _get_image_size(img)
area = height * width
for _ in range(10):
target_area = random.uniform(*scale) * area
log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
aspect_ratio = math.exp(random.uniform(*log_ratio))
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if 0 < w <= width and 0 < h <= height:
i = random.randint(0, height - h)
j = random.randint(0, width - w)
return i, j, h, w
# Fallback to central crop
in_ratio = float(width) / float(height)
if (in_ratio < min(ratio)):
w = width
h = int(round(w / min(ratio)))
elif (in_ratio > max(ratio)):
h = height
w = int(round(h * max(ratio)))
else: # whole image
w = width
h = height
i = (height - h) // 2
j = (width - w) // 2
return i, j, h, w
def __call__(self, img, mask):
"""
Args:
img (PIL Image): Image to be cropped and resized.
Returns:
PIL Image: Randomly cropped and resized image.
"""
i, j, h, w = self.get_params(img, self.scale, self.ratio)
# print(i, j, h, w)
img = TF.resized_crop(img, i, j, h, w, self.size, self.interpolation)
mask = TF.resized_crop(mask, i, j, h, w, self.size, Image.NEAREST)
return img, mask
def __repr__(self):
interpolate_str = _pil_interpolation_to_str[self.interpolation]
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
format_string += ', scale={0}'.format(
tuple(round(s, 4) for s in self.scale))
format_string += ', ratio={0}'.format(
tuple(round(r, 4) for r in self.ratio))
format_string += ', interpolation={0})'.format(interpolate_str)
return format_string
class ToOnehot(object):
"""To oneshot tensor
Args:
max_obj_n (float): Maximum number of the objects
"""
def __init__(self, max_obj_n, shuffle):
self.max_obj_n = max_obj_n
self.shuffle = shuffle
def __call__(self, mask, obj_list=None):
"""
Args:
mask (Mask in Numpy): Mask to be converted.
Returns:
Tensor: Converted mask in onehot format.
"""
new_mask = np.zeros((self.max_obj_n + 1, *mask.shape), np.uint8)
if not obj_list:
obj_list = list()
obj_max = mask.max() + 1
for i in range(1, obj_max):
tmp = (mask == i).astype(np.uint8)
if tmp.max() > 0:
obj_list.append(i)
if self.shuffle:
random.shuffle(obj_list)
obj_list = obj_list[:self.max_obj_n]
for i in range(len(obj_list)):
new_mask[i + 1] = (mask == obj_list[i]).astype(np.uint8)
new_mask[0] = 1 - np.sum(new_mask, axis=0)
return torch.from_numpy(new_mask), obj_list
def __repr__(self):
return self.__class__.__name__ + '(max_obj_n={})'.format(
self.max_obj_n)
class Resize(torch.nn.Module):
"""Resize the input image to the given size.
The image can be a PIL Image or a torch Tensor, in which case it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
Args:
size (sequence or int): Desired output size. If size is a sequence like
(h, w), output size will be matched to this. If size is an int,
smaller edge of the image will be matched to this number.
i.e, if height > width, then image will be rescaled to
(size * height / width, size).
In torchscript mode padding as single int is not supported, use a tuple or
list of length 1: ``[size, ]``.
interpolation (int, optional): Desired interpolation enum defined by `filters`_.
Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
and ``PIL.Image.BICUBIC`` are supported.
"""
def __init__(self, size, interpolation=Image.BILINEAR):
super().__init__()
if not isinstance(size, (int, Sequence)):
raise TypeError("Size should be int or sequence. Got {}".format(
type(size)))
if isinstance(size, Sequence) and len(size) not in (1, 2):
raise ValueError(
"If size is a sequence, it should have 1 or 2 values")
self.size = size
self.interpolation = interpolation
def forward(self, img, mask):
"""
Args:
img (PIL Image or Tensor): Image to be scaled.
Returns:
PIL Image or Tensor: Rescaled image.
"""
img = TF.resize(img, self.size, self.interpolation)
mask = TF.resize(mask, self.size, Image.NEAREST)
return img, mask
def __repr__(self):
interpolate_str = _pil_interpolation_to_str[self.interpolation]
return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(
self.size, interpolate_str)