Spaces:
Sleeping
Sleeping
File size: 25,167 Bytes
c985ba4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from utils.math import generate_permute_matrix
from utils.image import one_hot_mask
from networks.layers.basic import seq_to_2d
class AOTEngine(nn.Module):
def __init__(self,
aot_model,
gpu_id=0,
long_term_mem_gap=9999,
short_term_mem_skip=1,
max_len_long_term=9999):
super().__init__()
self.cfg = aot_model.cfg
self.align_corners = aot_model.cfg.MODEL_ALIGN_CORNERS
self.AOT = aot_model
self.max_obj_num = aot_model.max_obj_num
self.gpu_id = gpu_id
self.long_term_mem_gap = long_term_mem_gap
self.short_term_mem_skip = short_term_mem_skip
self.max_len_long_term = max_len_long_term
self.losses = None
self.restart_engine()
def forward(self,
all_frames,
all_masks,
batch_size,
obj_nums,
step=0,
tf_board=False,
use_prev_pred=False,
enable_prev_frame=False,
use_prev_prob=False): # only used for training
if self.losses is None:
self._init_losses()
self.freeze_id = True if use_prev_pred else False
aux_weight = self.aux_weight * max(self.aux_step - step,
0.) / self.aux_step
self.offline_encoder(all_frames, all_masks)
self.add_reference_frame(frame_step=0, obj_nums=obj_nums)
grad_state = torch.no_grad if aux_weight == 0 else torch.enable_grad
with grad_state():
ref_aux_loss, ref_aux_mask = self.generate_loss_mask(
self.offline_masks[self.frame_step], step)
aux_losses = [ref_aux_loss]
aux_masks = [ref_aux_mask]
curr_losses, curr_masks = [], []
if enable_prev_frame:
self.set_prev_frame(frame_step=1)
with grad_state():
prev_aux_loss, prev_aux_mask = self.generate_loss_mask(
self.offline_masks[self.frame_step], step)
aux_losses.append(prev_aux_loss)
aux_masks.append(prev_aux_mask)
else:
self.match_propogate_one_frame()
curr_loss, curr_mask, curr_prob = self.generate_loss_mask(
self.offline_masks[self.frame_step], step, return_prob=True)
self.update_short_term_memory(
curr_mask if not use_prev_prob else curr_prob,
None if use_prev_pred else self.assign_identity(
self.offline_one_hot_masks[self.frame_step]))
curr_losses.append(curr_loss)
curr_masks.append(curr_mask)
self.match_propogate_one_frame()
curr_loss, curr_mask, curr_prob = self.generate_loss_mask(
self.offline_masks[self.frame_step], step, return_prob=True)
curr_losses.append(curr_loss)
curr_masks.append(curr_mask)
for _ in range(self.total_offline_frame_num - 3):
self.update_short_term_memory(
curr_mask if not use_prev_prob else curr_prob,
None if use_prev_pred else self.assign_identity(
self.offline_one_hot_masks[self.frame_step]))
self.match_propogate_one_frame()
curr_loss, curr_mask, curr_prob = self.generate_loss_mask(
self.offline_masks[self.frame_step], step, return_prob=True)
curr_losses.append(curr_loss)
curr_masks.append(curr_mask)
aux_loss = torch.cat(aux_losses, dim=0).mean(dim=0)
pred_loss = torch.cat(curr_losses, dim=0).mean(dim=0)
loss = aux_weight * aux_loss + pred_loss
all_pred_mask = aux_masks + curr_masks
all_frame_loss = aux_losses + curr_losses
boards = {'image': {}, 'scalar': {}}
return loss, all_pred_mask, all_frame_loss, boards
def _init_losses(self):
cfg = self.cfg
from networks.layers.loss import CrossEntropyLoss, SoftJaccordLoss
bce_loss = CrossEntropyLoss(
cfg.TRAIN_TOP_K_PERCENT_PIXELS,
cfg.TRAIN_HARD_MINING_RATIO * cfg.TRAIN_TOTAL_STEPS)
iou_loss = SoftJaccordLoss()
losses = [bce_loss, iou_loss]
loss_weights = [0.5, 0.5]
self.losses = nn.ModuleList(losses)
self.loss_weights = loss_weights
self.aux_weight = cfg.TRAIN_AUX_LOSS_WEIGHT
self.aux_step = cfg.TRAIN_TOTAL_STEPS * cfg.TRAIN_AUX_LOSS_RATIO + 1e-5
def encode_one_img_mask(self, img=None, mask=None, frame_step=-1):
if frame_step == -1:
frame_step = self.frame_step
if self.enable_offline_enc:
curr_enc_embs = self.offline_enc_embs[frame_step]
elif img is None:
curr_enc_embs = None
else:
curr_enc_embs = self.AOT.encode_image(img)
if mask is not None:
curr_one_hot_mask = one_hot_mask(mask, self.max_obj_num)
elif self.enable_offline_enc:
curr_one_hot_mask = self.offline_one_hot_masks[frame_step]
else:
curr_one_hot_mask = None
return curr_enc_embs, curr_one_hot_mask
def offline_encoder(self, all_frames, all_masks=None):
self.enable_offline_enc = True
self.offline_frames = all_frames.size(0) // self.batch_size
# extract backbone features
self.offline_enc_embs = self.split_frames(
self.AOT.encode_image(all_frames), self.batch_size)
self.total_offline_frame_num = len(self.offline_enc_embs)
if all_masks is not None:
# extract mask embeddings
offline_one_hot_masks = one_hot_mask(all_masks, self.max_obj_num)
self.offline_masks = list(
torch.split(all_masks, self.batch_size, dim=0))
self.offline_one_hot_masks = list(
torch.split(offline_one_hot_masks, self.batch_size, dim=0))
if self.input_size_2d is None:
self.update_size(all_frames.size()[2:],
self.offline_enc_embs[0][-1].size()[2:])
def assign_identity(self, one_hot_mask):
if self.enable_id_shuffle:
one_hot_mask = torch.einsum('bohw,bot->bthw', one_hot_mask,
self.id_shuffle_matrix)
id_emb = self.AOT.get_id_emb(one_hot_mask).view(
self.batch_size, -1, self.enc_hw).permute(2, 0, 1)
if self.training and self.freeze_id:
id_emb = id_emb.detach()
return id_emb
def split_frames(self, xs, chunk_size):
new_xs = []
for x in xs:
all_x = list(torch.split(x, chunk_size, dim=0))
new_xs.append(all_x)
return list(zip(*new_xs))
def add_reference_frame(self,
img=None,
mask=None,
frame_step=-1,
obj_nums=None,
img_embs=None):
if self.obj_nums is None and obj_nums is None:
print('No objects for reference frame!')
exit()
elif obj_nums is not None:
self.obj_nums = obj_nums
if frame_step == -1:
frame_step = self.frame_step
if img_embs is None:
curr_enc_embs, curr_one_hot_mask = self.encode_one_img_mask(
img, mask, frame_step)
else:
_, curr_one_hot_mask = self.encode_one_img_mask(
None, mask, frame_step)
curr_enc_embs = img_embs
if curr_enc_embs is None:
print('No image for reference frame!')
exit()
if curr_one_hot_mask is None:
print('No mask for reference frame!')
exit()
if self.input_size_2d is None:
self.update_size(img.size()[2:], curr_enc_embs[-1].size()[2:])
self.curr_enc_embs = curr_enc_embs
self.curr_one_hot_mask = curr_one_hot_mask
if self.pos_emb is None:
self.pos_emb = self.AOT.get_pos_emb(curr_enc_embs[-1]).expand(
self.batch_size, -1, -1,
-1).view(self.batch_size, -1, self.enc_hw).permute(2, 0, 1)
curr_id_emb = self.assign_identity(curr_one_hot_mask)
self.curr_id_embs = curr_id_emb
# self matching and propagation
self.curr_lstt_output = self.AOT.LSTT_forward(curr_enc_embs,
None,
None,
curr_id_emb,
pos_emb=self.pos_emb,
size_2d=self.enc_size_2d)
lstt_embs, lstt_curr_memories, lstt_long_memories, lstt_short_memories = self.curr_lstt_output
if self.long_term_memories is None:
self.long_term_memories = lstt_long_memories
else:
self.update_long_term_memory(lstt_long_memories)
self.last_mem_step = self.frame_step
self.short_term_memories_list = [lstt_short_memories]
self.short_term_memories = lstt_short_memories
def set_prev_frame(self, img=None, mask=None, frame_step=1):
self.frame_step = frame_step
curr_enc_embs, curr_one_hot_mask = self.encode_one_img_mask(
img, mask, frame_step)
if curr_enc_embs is None:
print('No image for previous frame!')
exit()
if curr_one_hot_mask is None:
print('No mask for previous frame!')
exit()
self.curr_enc_embs = curr_enc_embs
self.curr_one_hot_mask = curr_one_hot_mask
curr_id_emb = self.assign_identity(curr_one_hot_mask)
self.curr_id_embs = curr_id_emb
# self matching and propagation
self.curr_lstt_output = self.AOT.LSTT_forward(curr_enc_embs,
None,
None,
curr_id_emb,
pos_emb=self.pos_emb,
size_2d=self.enc_size_2d)
lstt_embs, lstt_curr_memories, lstt_long_memories, lstt_short_memories = self.curr_lstt_output
if self.long_term_memories is None:
self.long_term_memories = lstt_long_memories
else:
self.update_long_term_memory(lstt_long_memories)
self.last_mem_step = frame_step
self.short_term_memories_list = [lstt_short_memories]
self.short_term_memories = lstt_short_memories
def update_long_term_memory(self, new_long_term_memories):
TOKEN_NUM = new_long_term_memories[0][0].shape[0]
if self.long_term_memories is None:
self.long_term_memories = new_long_term_memories
updated_long_term_memories = []
for new_long_term_memory, last_long_term_memory in zip(
new_long_term_memories, self.long_term_memories):
updated_e = []
for new_e, last_e in zip(new_long_term_memory,
last_long_term_memory):
if new_e is None or last_e is None:
updated_e.append(None)
else:
if last_e.shape[0] >= self.max_len_long_term * TOKEN_NUM:
last_e = last_e[:(self.max_len_long_term - 1) * TOKEN_NUM]
updated_e.append(torch.cat([new_e, last_e], dim=0))
updated_long_term_memories.append(updated_e)
self.long_term_memories = updated_long_term_memories
def update_short_term_memory(self, curr_mask, curr_id_emb=None, skip_long_term_update=False):
if curr_id_emb is None:
if len(curr_mask.size()) == 3 or curr_mask.size()[0] == 1:
curr_one_hot_mask = one_hot_mask(curr_mask, self.max_obj_num)
else:
curr_one_hot_mask = curr_mask
curr_id_emb = self.assign_identity(curr_one_hot_mask)
lstt_curr_memories = self.curr_lstt_output[1]
lstt_curr_memories_2d = []
for layer_idx in range(len(lstt_curr_memories)):
curr_k, curr_v = lstt_curr_memories[layer_idx][
0], lstt_curr_memories[layer_idx][1]
curr_k, curr_v = self.AOT.LSTT.layers[layer_idx].fuse_key_value_id(
curr_k, curr_v, curr_id_emb)
lstt_curr_memories[layer_idx][0], lstt_curr_memories[layer_idx][
1] = curr_k, curr_v
lstt_curr_memories_2d.append([
seq_to_2d(lstt_curr_memories[layer_idx][0], self.enc_size_2d),
seq_to_2d(lstt_curr_memories[layer_idx][1], self.enc_size_2d)
])
self.short_term_memories_list.append(lstt_curr_memories_2d)
self.short_term_memories_list = self.short_term_memories_list[
-self.short_term_mem_skip:]
self.short_term_memories = self.short_term_memories_list[0]
if self.frame_step - self.last_mem_step >= self.long_term_mem_gap:
# skip the update of long-term memory or not
if not skip_long_term_update:
self.update_long_term_memory(lstt_curr_memories)
self.last_mem_step = self.frame_step
def match_propogate_one_frame(self, img=None, img_embs=None):
self.frame_step += 1
if img_embs is None:
curr_enc_embs, _ = self.encode_one_img_mask(
img, None, self.frame_step)
else:
curr_enc_embs = img_embs
self.curr_enc_embs = curr_enc_embs
self.curr_lstt_output = self.AOT.LSTT_forward(curr_enc_embs,
self.long_term_memories,
self.short_term_memories,
None,
pos_emb=self.pos_emb,
size_2d=self.enc_size_2d)
def decode_current_logits(self, output_size=None):
curr_enc_embs = self.curr_enc_embs
curr_lstt_embs = self.curr_lstt_output[0]
pred_id_logits = self.AOT.decode_id_logits(curr_lstt_embs,
curr_enc_embs)
if self.enable_id_shuffle: # reverse shuffle
pred_id_logits = torch.einsum('bohw,bto->bthw', pred_id_logits,
self.id_shuffle_matrix)
# remove unused identities
for batch_idx, obj_num in enumerate(self.obj_nums):
pred_id_logits[batch_idx, (obj_num+1):] = - \
1e+10 if pred_id_logits.dtype == torch.float32 else -1e+4
self.pred_id_logits = pred_id_logits
if output_size is not None:
pred_id_logits = F.interpolate(pred_id_logits,
size=output_size,
mode="bilinear",
align_corners=self.align_corners)
return pred_id_logits
def predict_current_mask(self, output_size=None, return_prob=False):
if output_size is None:
output_size = self.input_size_2d
pred_id_logits = F.interpolate(self.pred_id_logits,
size=output_size,
mode="bilinear",
align_corners=self.align_corners)
pred_mask = torch.argmax(pred_id_logits, dim=1)
if not return_prob:
return pred_mask
else:
pred_prob = torch.softmax(pred_id_logits, dim=1)
return pred_mask, pred_prob
def calculate_current_loss(self, gt_mask, step):
pred_id_logits = self.pred_id_logits
pred_id_logits = F.interpolate(pred_id_logits,
size=gt_mask.size()[-2:],
mode="bilinear",
align_corners=self.align_corners)
label_list = []
logit_list = []
for batch_idx, obj_num in enumerate(self.obj_nums):
now_label = gt_mask[batch_idx].long()
now_logit = pred_id_logits[batch_idx, :(obj_num + 1)].unsqueeze(0)
label_list.append(now_label.long())
logit_list.append(now_logit)
total_loss = 0
for loss, loss_weight in zip(self.losses, self.loss_weights):
total_loss = total_loss + loss_weight * \
loss(logit_list, label_list, step)
return total_loss
def generate_loss_mask(self, gt_mask, step, return_prob=False):
self.decode_current_logits()
loss = self.calculate_current_loss(gt_mask, step)
if return_prob:
mask, prob = self.predict_current_mask(return_prob=True)
return loss, mask, prob
else:
mask = self.predict_current_mask()
return loss, mask
def keep_gt_mask(self, pred_mask, keep_prob=0.2):
pred_mask = pred_mask.float()
gt_mask = self.offline_masks[self.frame_step].float().squeeze(1)
shape = [1 for _ in range(pred_mask.ndim)]
shape[0] = self.batch_size
random_tensor = keep_prob + torch.rand(
shape, dtype=pred_mask.dtype, device=pred_mask.device)
random_tensor.floor_() # binarize
pred_mask = pred_mask * (1 - random_tensor) + gt_mask * random_tensor
return pred_mask
def restart_engine(self, batch_size=1, enable_id_shuffle=False):
self.batch_size = batch_size
self.frame_step = 0
self.last_mem_step = -1
self.enable_id_shuffle = enable_id_shuffle
self.freeze_id = False
self.obj_nums = None
self.pos_emb = None
self.enc_size_2d = None
self.enc_hw = None
self.input_size_2d = None
self.long_term_memories = None
self.short_term_memories_list = []
self.short_term_memories = None
self.enable_offline_enc = False
self.offline_enc_embs = None
self.offline_one_hot_masks = None
self.offline_frames = -1
self.total_offline_frame_num = 0
self.curr_enc_embs = None
self.curr_memories = None
self.curr_id_embs = None
if enable_id_shuffle:
self.id_shuffle_matrix = generate_permute_matrix(
self.max_obj_num + 1, batch_size, gpu_id=self.gpu_id)
else:
self.id_shuffle_matrix = None
def update_size(self, input_size, enc_size):
self.input_size_2d = input_size
self.enc_size_2d = enc_size
self.enc_hw = self.enc_size_2d[0] * self.enc_size_2d[1]
class AOTInferEngine(nn.Module):
def __init__(self,
aot_model,
gpu_id=0,
long_term_mem_gap=9999,
short_term_mem_skip=1,
max_aot_obj_num=None,
max_len_long_term=9999,):
super().__init__()
self.cfg = aot_model.cfg
self.AOT = aot_model
if max_aot_obj_num is None or max_aot_obj_num > aot_model.max_obj_num:
self.max_aot_obj_num = aot_model.max_obj_num
else:
self.max_aot_obj_num = max_aot_obj_num
self.gpu_id = gpu_id
self.long_term_mem_gap = long_term_mem_gap
self.short_term_mem_skip = short_term_mem_skip
self.max_len_long_term = max_len_long_term
self.aot_engines = []
self.restart_engine()
def restart_engine(self):
del (self.aot_engines)
self.aot_engines = []
self.obj_nums = None
def separate_mask(self, mask, obj_nums):
if mask is None:
return [None] * len(self.aot_engines)
if len(self.aot_engines) == 1:
return [mask], [obj_nums]
separated_obj_nums = [
self.max_aot_obj_num for _ in range(len(self.aot_engines))
]
if obj_nums % self.max_aot_obj_num > 0:
separated_obj_nums[-1] = obj_nums % self.max_aot_obj_num
if len(mask.size()) == 3 or mask.size()[0] == 1:
separated_masks = []
for idx in range(len(self.aot_engines)):
start_id = idx * self.max_aot_obj_num + 1
end_id = (idx + 1) * self.max_aot_obj_num
fg_mask = ((mask >= start_id) & (mask <= end_id)).float()
separated_mask = (fg_mask * mask - start_id + 1) * fg_mask
separated_masks.append(separated_mask)
return separated_masks, separated_obj_nums
else:
prob = mask
separated_probs = []
for idx in range(len(self.aot_engines)):
start_id = idx * self.max_aot_obj_num + 1
end_id = (idx + 1) * self.max_aot_obj_num
fg_prob = prob[start_id:(end_id + 1)]
bg_prob = 1. - torch.sum(fg_prob, dim=1, keepdim=True)
separated_probs.append(torch.cat([bg_prob, fg_prob], dim=1))
return separated_probs, separated_obj_nums
def min_logit_aggregation(self, all_logits):
if len(all_logits) == 1:
return all_logits[0]
fg_logits = []
bg_logits = []
for logit in all_logits:
bg_logits.append(logit[:, 0:1])
fg_logits.append(logit[:, 1:1 + self.max_aot_obj_num])
bg_logit, _ = torch.min(torch.cat(bg_logits, dim=1),
dim=1,
keepdim=True)
merged_logit = torch.cat([bg_logit] + fg_logits, dim=1)
return merged_logit
def soft_logit_aggregation(self, all_logits):
if len(all_logits) == 1:
return all_logits[0]
fg_probs = []
bg_probs = []
for logit in all_logits:
prob = torch.softmax(logit, dim=1)
bg_probs.append(prob[:, 0:1])
fg_probs.append(prob[:, 1:1 + self.max_aot_obj_num])
bg_prob = torch.prod(torch.cat(bg_probs, dim=1), dim=1, keepdim=True)
merged_prob = torch.cat([bg_prob] + fg_probs,
dim=1).clamp(1e-5, 1 - 1e-5)
merged_logit = torch.logit(merged_prob)
return merged_logit
def add_reference_frame(self, img, mask, obj_nums, frame_step=-1):
if isinstance(obj_nums, list):
obj_nums = obj_nums[0]
self.obj_nums = obj_nums
aot_num = max(np.ceil(obj_nums / self.max_aot_obj_num), 1)
while (aot_num > len(self.aot_engines)):
new_engine = AOTEngine(self.AOT, self.gpu_id,
self.long_term_mem_gap,
self.short_term_mem_skip,
self.max_len_long_term,)
new_engine.eval()
self.aot_engines.append(new_engine)
separated_masks, separated_obj_nums = self.separate_mask(
mask, obj_nums)
img_embs = None
for aot_engine, separated_mask, separated_obj_num in zip(
self.aot_engines, separated_masks, separated_obj_nums):
aot_engine.add_reference_frame(img,
separated_mask,
obj_nums=[separated_obj_num],
frame_step=frame_step,
img_embs=img_embs)
if img_embs is None: # reuse image embeddings
img_embs = aot_engine.curr_enc_embs
self.update_size()
def match_propogate_one_frame(self, img=None):
img_embs = None
for aot_engine in self.aot_engines:
aot_engine.match_propogate_one_frame(img, img_embs=img_embs)
if img_embs is None: # reuse image embeddings
img_embs = aot_engine.curr_enc_embs
def decode_current_logits(self, output_size=None):
all_logits = []
for aot_engine in self.aot_engines:
all_logits.append(aot_engine.decode_current_logits(output_size))
pred_id_logits = self.soft_logit_aggregation(all_logits)
return pred_id_logits
def update_memory(self, curr_mask, skip_long_term_update=False):
_curr_mask = F.interpolate(curr_mask,self.input_size_2d)
separated_masks, _ = self.separate_mask(_curr_mask, self.obj_nums)
for aot_engine, separated_mask in zip(self.aot_engines,
separated_masks):
aot_engine.update_short_term_memory(separated_mask,
skip_long_term_update=skip_long_term_update)
def update_size(self):
self.input_size_2d = self.aot_engines[0].input_size_2d
self.enc_size_2d = self.aot_engines[0].enc_size_2d
self.enc_hw = self.aot_engines[0].enc_hw
|